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1. phys. A Math Gen. 26 (1993) 7343-7366. F’rinted in the UK 
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Abstract. The recent generalization to the w e  of arbitrary tile lengths and arbimy scattering 
Factors of the calculation of the structure factor of ID substitutional systems is studied in &fail. 
This method make? it easy to find all lhe peaks in the diffraction spectrum of a system. The 
well known periodic and quasiperiwJic spectra with S peaks at integer multiples of a single 
number and integer h e a r  combinations of two incommensurate frequencies, respectively. were 
found to be the I = 0 subsets of two more general types of spec- infinite-periodic (or limit- 
periodic) and infinitequasipericdic (or limitquasiperiodic) characterized by rational numbers of 
the type mid. I = 0, . . . ,a in place of the above integers. Substitution NI= that produce 
quasicrystalline quasiperiodic and infinitequasiperiodic spectra give the same type of spectrum 
for all values of the ratio p = pa/pa of the two tile lengths p,, and pb. This is not the case 
for lk other rules. Thus the same substitution rule (such as the mpper-mean rule) can give an 
infinite-periodic specbwn for a single rational ratio p = p./pb of the two tile lengths po and 
pa. a periodic-like spectrum for other rational p. and a spec” in some aspects similar to that 
of a random system when p is an irrational number. On the other hand, a ThueMorse system 
d i h t s  as a periodic crystal when p # 1 but has no non-uivial S peaks when p = 1. Other 
Thue-Morse-like systems can have infinite-periodic spectra for all p. 

1. Introduction 

The discovery by Penrose [ 11 of the existence of non-periodic tilings with long-range order, 
and the first experimental indication by Shechman et a1 [Z] that such quasicrystals may be 
obtained under certain conditions in nature, stimulated extensive theoretical investigation 
of the properties of ID, 2D and higher-dimensional deterministic aperiodic structures that 
are now believed to populate rather densely the previously unexplored territory between 
the periodic and random lattices. Though at least 2D models are needed to explain the 
properties of ‘natural’ quasicrystals, the study of ID structures, besides being useful for 
testing of methods that can usually be applied to arbitrary-dimensional systems, is especially 
important in the light of the recently developed experimental techniques to manufacture 
arbitrarily ordered layered structure$ [3,5], and to analyse them in terms of high-resolution 
x-ray diffraction spectra 141. 

%o general methods are used to generate deterministic aperiodic lattices of various 
dimensions: (i) projection from a higherdimensional periodic lattice 16.71 (or its various 
higher-dimensional generalizations [8]), and (ii) repetitive use of substitution (inflation) rules 

5 Resent address: AECL Research, Whitahell Laboratories, Pinawa, Manitoba Canada ROE ILO. 
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starting with a simple seed [9]. While the former method can give only quasicrystals (defined 
by dense aperiodic arrays of Bragg peaks in their diffraction panems), the latter method can 
also produce many interesting aperiodic systems that are not quasicrystals (e.g. ThusMorse 
superlattices). Conversely, there exist projectional quasicrystals that cannot be generated by 
a single substitution rule. When calculating the structure factor of a substitutional system, it 
is easy to consider different scattering factors of the different building blocks as can be seen 
in this paper. On the other hand, the projectional quasicrystals studied so far were obtained 
from higher-dimensional periodic anays of identical scatterers, and it is not obvious how to 
take into account different scattering factors of the two or more elementary building blocks 
in the projection (cut-and-project) method. 

Here we deal only with ID substitutional systems generated by substitution rules on an 
alphabet of U letters [9] representing U elementary building blocks (tiles) of the system. 
By definition, the structure factor (Fourier transform) of I D  quasicrystals has 6-function 
(Bragg) peaks rhe positions of which cannot be expressed as integral multiples of a single 
spatialfrequency (wavevector). The first attempt to answer the question of which of the 
ID substitutional systems are quasicrystals was made by Bomhieri and Taylor [IO]. who 
conjectured that a sufficient condition for such a system to be a quasicrystal is that the 
Penon-Fiobenius eigenvalue hl of the substitution matrix be a Pisot-Vijayaraghavan (PV) 
number. As the entries of a substitution matrix are all integers, this is equivalent to requiring 
that Ihl I > 1 and all other [A, I < I .  Other authors [3,5,11-191 studied in more detail several 
special systems, mainly with special values of the tile-length ratio p. in all these studies 
either the lengths of different tiles or the corresponding scattering factors differed but not 
both. Most of these studies were based on individually derived recursion relations for 
the sbllcture factor of finite approximants of a single infinite chain. A unifying scheme 
readily applicable to all substitutional systems was developed by KoI& [20] using the 
matrix formulation [I71 of the recursion relations, some elements of which were already 
present in [13] and recently in [19]. In this scheme, one calculates simultaneously the 
structure factors for a whole group of related infinite chains-the canonical chains [21,22] 
generated by the given substitution rule from all possible single-letter seeds. This results 
in the recursion relations for the structure factor having a simple and transparent matrix 
form. The simultaneous treatment of all canonical chains proved to be very advantageous 
also for the calculation of the specual properties of these systems as expressed in terms of 
transfer-matrix-trace maps [21,22]. As in the case of the transfermatrix haces [21]. the 
structure factor of an arbitrary chain (obtained from an arbitmy seed) can be expressed in 
terms of the structure factors of the canonical chains. Luck et a1 [23] recently also studied 
the structure factor of a large class of substitutional systems along similar lines. See also 
the work of Combescure on the quantum autocorrelation function of the Hamiltonian of the 
kicked rotator [24]. 

Cheng and Savit [I71 formulated their scheme only for two-letter I D  substitutional 
systems with both tiles of equaf length, and applied it only to a few substitution rules. 
A lot of confusion still remained, e.g. as to the interpretation of the Bombieri and 
Taylor results-pehaps related to the problem of a suitable definition of a quasicrystal 
(cf [IO, 13,14,16,17,201). Recently, Kol& [20] obtained the positions of the S peaks (i.e. 
the diffraction spots) for all two-letter substitutional systems with arbitrary tile lengths 
pa and ph and arbitrary scattering factors s,,(uJ) and s&o) of the two tiles. Based on the 
arrangement of the 6 peaks, all two-letter substitutional systems fall roughly in the following 
classes: (i) periodic systems with 6 peaks at integral multiples of a single number, (ii) 
‘classical’ quasicrystals with 6 peaks at integral linear combinations of two incommensurate 
spatial frequencies, (iii) infinite-periodic systems with 6 peaks at certain rational multiples of 
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a single spatial frequency, (iv) infinitequasiperiodic systems with 6 peaks at certain rational 
linear combinations of two incommensurate spatial frequencies, (v) aperiodic systems with 
periodic-like non-trivial &peak positions, and (vi) aperiodic systems with no non-trivial 6 
peaks. The most interesting situation (infinite-periodic or periodic-like spectra) can be found 
among the systems with an integer Permn-Frobenius eigenvalue AI ,  or when IAzI > 1 and 
the ratio p = palpb  is rational. Thus the class of systems with A2 = 0 includes all two-letter 
periodic systems and many of the new infinite-periodic systems. It also contains aperiodic 
systems with periodic-like spectra, such as a Thue-Morse (TM) chain with unequal tile 
lengths. The periodic-like spectra are even more abundant for IAzI z 1 than was reported 
in [20] (see section 5.2). Nevertheless, periodic-like spectra for IAzI > 1 do not represent a 
generic case because they are not robust under perturbation on p. 

For structures other than the classical quasicrystals and infinite-quasiperiodic systems 
(i.e. when p.21 2 I), the presence of the 6 peaks in the structure factor is generally not 
uniquely given by the used substitution rule; it also depends on p: for a rational p ,  the 
spectrum is infinite-periodic or periodic-like, while for an irrational p, there are no 6 peaks 
except a single trivial one. For example, a copper-mean system (A2 = - 1) has an infinite- 
periodic spectrum for a single rational value of p. can &&act as a periodic crystal for other 
rational p. and diffmcts essentially as a random system for all irrational p. In the case of the 
TM substitution rule (which has the w property) the situation is opposite in a scnse: except 
for a special choice of the ‘atomic’ scattering factors there is always a periodic array of 6 
peaks in its structure factor. m i s  special choice of the atomic scattering faqtors, apparently 
of little physical significance, was used in the previous studies [12,14,171 of the TM chains, 
which led to occasional claims that a TM chain does not have 6 peaks at all.) If the two 
tiles have different lengths, the periodic set of 8-peak positions is exactly the same as an 
(existing) periodic system, while it contains no non-trivial 6 peaks if the tiles are of the 
same lengths (i.e. for a single value of p). However, the sets of all peaks, including those 
with scaling exponent smaller than 2 (which is the value for the 8 peaks) are very similar in 
the TM and copper-mean systems as will be shown in a sequel to this paper. Hopefully these 
results can shed some light into the ongoing discussion [25,26] on whether these systems 
are more random or more periodic than quasicrystals. 

Luck et al [U] also got the infinite-quasiperiodic spectrum (they call it limit- 
quasiperiodic using the term of M l e r  who is, as far as we know, the first who pointed out 
the existence of this kind of s p e c ” ) .  They used s, = sb = 1 and mostly a single irrational 
value of p .  and studied only the rules with irrational AI. Thus they were outside the region 
where infinite-periodic spectra can be found. They concentrated on the relation between 
classical quasicrystals and certain periodic structures (atomic surfaces) in a 2D superspace. 

The rest of the paper is organized as follows. In section 2 we discuss the importance of 
canonical chains. In section 3 we summerize the properties of substitutional sequences and 
1D systems based on such sequences. In section 4 we give all the details of the procedure 
for the stmcture factor calculation for arbitrary tile lengths. In section 5 we present a 
detailed derivation of the positions of the 6 peaks and discuss some specific examples. In 
section 6 we summarize our results, and give some suggestions for future experiments. 
Some technical details are given in two appendices. 

2. Canonical chains 

Let us first define the notation. A is a set (alphabet) of U letters ai, i = I , .  . . , U .  dk is 
the set of all words over A of length k, and A’ = U&dk. The length of a word w E A* 
is IwI, and its letters are w [ i ] ;  i = 0, .. . , lwl - 1. The empty word is E :  J E J  = 0, E € & ,  
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ax denotes k adjacent letters a, and ao = E. A v-letter substitution rule 6 is a map from A 
into A'. It is often written out as ai H $(ai) : i = 1, . . . U , where 

S(ai) = aY(o.i)ay(i.ii ... a y i k , - l . i )  E A' ki = le(Qi)l. (1) 

The mapping c can be extended in a natural way to words over A*. N,QL is the number 
of occurrences of letter ,y in the word eL(@).  

In physical applications, the v letters a; are assumed to represent v different elementary 
building blocks of a one-dimensional chain or layered structure [9]. Each 6 produces v 
canonical substitutional sequences (or chains) [21,22] em(@) = limL,,eL(a;), such that 
$ o ( a i ) ~ a i , a n d ~ L ( a i ) = ~ ( ~ L - ' ~ a ; ) ) : i  = 1, ..., v .  Someorallofem(ai)canbeidentical. 
tL(a i )  are called the Lth generation canonical chains. By induction, one can prove that (1) 
leads to the inflation (juxtaposition) rule 

tL+'(ai) = P(a,co.i,) . ~ ~ t L ( a , ( ~ - ~ , i ) ) .  (2) 

For some 6 ,  the limits above need not exist in the strict sense for some or even all i because 
the corresponding e L(ai) oscillate between successive approximations to infinite words that 
are the points of a periodic orbit of e. The respective $"(ai) then denote these points (in 
some order). In this sense, for example, (a- bab, b w  a) gives {#w(aj)] {ababab.. ., 
bababa.. .). 

Canonical chains are simply the chains that are obtained from the simplest possible 
seeds-the letters of A. They are useful for expressing the propetties of chains C L ,  Cm 
obtained from an arbitrarily long seed CO: CL = tL(Co).  Evidently 

CL = t~~CO~OI~e~~CO~ll~e"co~2l~ ... = FL(ai,)cL(ai,)SL(ai,) ... (3) 

where i, is the index of the jth letter of CO: Co[j] = ai;. In 1211 it was shown (at least 
for two letters) that the spectral properties of Ct as expressed in terms of traces of certain 
transfer matrices are uniquely determined by the canonical chains cL(ai).  

The trace of the transfer matrix associated with CL is simply given by a polynomial in 
the traces of the transfer matrices associated with cL(ai). Thus the trace associated with 
C L  is simply a 'slave' of a certain trace map given uniquely by E L ( @ ) .  This trace map is 
not at all influenced by the trace associated with C L .  and is the same for all CL.  In the 
formulation of Bovier and Ghez [27], the seed CO is the only additional (composite) letter 
that must be added to the original alphabet A to get the trace map determining the spectral 
properties of C L .  This 'letter' is passive in the sense that the associated trace never occurs 
on the right-hand side of the equations of the extended trace map. which is just the trace 
map for all SL(ai) supplemented with one passive equation for the trace associated with 
CL. This additional equation is just the polynomial mentioned above. 

A similar situation exists in the case of the structure factor. We show in section 4 
(equation (20)) that the sIructure factor associated with C L  is a linear combination of the 
structure factors associated with EL(ai). Structure factors of all SL(ai) are determined by 
a certain 'structure factor map' that gives the structure factors of SL(ai) in terms of those 
of tL-'(ai). Generally, all the structure factors of EL-'(ai) are needed to determine the 
structure factor of each eL(ai).  

Here we study the structure factor of non-periodic structures (canonical chains) 
constructed by arranging in a line the minimum of two building blocks using a two-letter 
substitution rule. The generalization of the whole procedure to the case of more building 
blocks (U =- 2) is straightforward 
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3. Tho-letter substitution rules 

Denoting the two letters U and b, A = (a. b) ,  and a general two-letter substitution rule can 
be written in the form 

F ( U )  = a p q h  b) t ( b )  = B r s ( ~  b )  (4) 

where apq(u, b) [Brs(a. b)]  denotes a shing of total length p + q [r +SI consisting of a 
certain permutation of p [ r l  letters U and q [SI letters b. The corresponding canonical chains 
are, in this case, F ' ( Q )  and tL (b ) ,  and (2) can be rewritten as 

FL+'(a) =apq(tL(a),F'(b)) = Brs(tL(u).FL(b)) L =- 0 .  (3 

The primary objects of our investigation are infinite non-periodic self-similar chains with 
long-range order. To eliminate the cases which deviate most from this category, we consider 
only the primitive substitution rules, which means that (p + s) q r # 0. Then both $"(U) 

and tm(b )  are infinite. However, some of the primitive still give periodic or almost 
periodic chains. 

The same substitution matrix S = (y;:) is shared by (py)(':") different rules of type (4). 
All such rules give the same numbers N,+L: 

The same recursion formula 

NXOL = ( P  +d N.Y+L-~  + (qr - PS) N X + ~ - 2  (7) 

holds for all x, + E .A, and also for ItL(q4)I = N=+L + N M L .  Denoting p + s = mefi and 
qr - PS = ne%, equation (7) acquires the same form as the formula for the generalized 
Fibonacci numbers [281, which is a special case of (7) with p = m, q = n ,  r = 1 and 
s = 0. Unlike n of a generalized Fibonacci substitution [&) = amW, e(b)  = a]. 
net  can also assume negative values. The roots of the characteristic equation of the 
difference equation (7) are real numbers equal to the eigenvalues of the substitution matrix 
S, A t  = 1 (m, + JG), A2 = $(me, - JG). A, is a PV number if 
IAzI 1. A i  is also called the 'mean' of the corresponding rule. Equation (7) can be 
rewritten as 

N ~ + L  - A I  N X ~ L - I  = hz ( N X ~ L - I  - A i  N X + ~ - d  x. q4 E A .  (8) 

Thus, as L + 00, l N x + ~  -hi N , ~ L - I  I goes to zero if lhzl < 1 (when AI  is a PV number), 
is constant if l A ~ 1  = 1, and diverges if 1x21 1. 

For primitive substitutions we have (cf (14) below) 

and 
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where 

S O  (11) 

(12) 

hi - S  r P - A Z  r r = - = - = - = -  
q A1-p 4 s - A2 

is also called the ‘incommensurability’ of the rule. Equation (1 1) gives 

The right and left eigenvectors of S. Se:’ = Ai e;) and ey’S = Ai e,“’, i = 1,2, are 
qr2 = ( p  -s)r + r .  

Applying SL as given by (6) to these eigenvectors, one can derive explicit formulae for all 
N x + ~  and various relations between them. For example, using the left eigenvectors gives 

5 N o o ~  

r No0L - q t  NabL = r % 
N.bL = 5 A: Z Nb,L + NbbL = 

L r N ~ L  - qr NbbL = -qt  A2 . 
(13) 

The first two of these formulae give, for example, 

(alternatively, this can be proven by induction starting from L = 1 and using (8)). All four 
then give 

(leL(u)l - A1 ltL-l(u)l) 5 + leL(b)l - A I  EL-’(b)I = 0 

Similarly, sL 4’ = $ e r  gives 

or 

and for 1A21 < 1 both terms in this sum go to zero independently as L + 00. 
Non-primitive substitutions can also be of interest, for instance, if q = 0, then 

p < s and 00 otherwise. If r = 0, then N.bL = 0, Nb.L = q (sL - p L ) / ( s  - p ) .  and 
r = limL-rw(No.L/NbbL) = ( p  - s ) /q  if p 5 s and zero otherwise. In both these cases, 
N..L = P L ,  NbbL = S , AI  = max ( p ,  s) and A2 = min ( p .  s). 

For the study of diffraction a rather simple model of the two building blocks of the ID 
physical chains based on eL(u)  and cL(b) will suffice. The building block associated with 
the letter 4 is fully characterized by a length (tile) p+ and an ‘atomic-like’ scattering factor 
$+(U) (see figure I) .  Let us denote by  la^ and LbL the total lengths of such Lth generation 
physical chains eL(u)  and eL(b), respectively. Then 

(15) L Nnbr - 5 NbbL = -5 A2 N..L - r NbaL = hf 
5 O“.L - 5 N ~ L )  + (NabL - 5 Nbbd = 0 

NbaL = 0, NobL = r ( S L  - p L ) / ( S  - p), and 5 = hlL-rw(NobL/NbbL) = r/(S - P) if 

LL = p) = S L L - ~  = S L  k) 
L b L  

and for all primitive substitutions, we have 

This means that both L,,L and LbL scale with L as hlL. 
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Figure I. The two building blaeks n and b are characlezkd by tiles of length pa and pb (e.g. 
in a superlattice equal U, k Ihickenr.= of two different layen ule boundaries of which SE 
indicated by lhin dotted lines) and by wavevector dependent scattering factors s&) and sb(w). 
representing continuous or discrete disaibution of suitable scattew along the tiles. 

4. Structure factor 

The diffraction spectrum of a certain target is determined by the Fourier transform of the 
density of scatterers of the radiation used to probe the target e.g. the electron density in 
the case of X-rays. This Fourier transform is usually called the structure factor of the 
target. The structure factor (or its x-component along the direction of the chains) of the 
two physical cmonical chains eL(a)  and cL(b)  (linear arrays built according to using two 
different building blocks as indicated in figure 1) is evidently 

Here x a ( t L ( x ) )  = 0. x.+I(<~(x)) = x.(eL(x))  + ~ p ( ~ ) [ ~ l  (cffigure 1). OJ is equal to the 
x-component of the difference of the wavevectors of the scattered and incident waves, 

s+(w) = u+(x) e2inu a 
is the scattering factor (referred to the beginning of the block) of the building block 4, 
and U&) is the density of the respective scatterers inside this block. For example, if 
U&) = u + ~ ( x  - p&) (a single scatterer at the centre of the tile), sg(o) = u+ei"-*. If 
U&) = const, then s+(o) = U+ einw@ sin (nmp+)/no. 

The structure factor of c"(x) can be obtained as the limit of the structure factors of 
the finite approximants cL(x): Fx,(o)  = limL-rm F x ~ ( o ) .  We then say that there is an 
crx(w)-peak in the structure factor of the infinite chain at an U, if there exists a positive 
number crx(o) such that IFx~(o)12 scales as Then 
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A 2-peak is called the 6 peak as it gives the Dirac &function in [FX,(o)1*. The intensity 
of an a,(o)-peak is defined as 

Note that cu,(o) < 2 for both x E A because 

Consequently, I X ( 4  4 max (Is&)l/pa. ISb(o ) l /pb)  when 

in terms of the structure factors of the canonical chains as 

= 2. 
Evidently, the structurefactor Oco~(o) of an arbitrary chain CL of (3) can be written 

where by convention, 
As in [17.20], it is convenient to consider the two Fourier amplitudes F.L(o) and 

&(a) of (18) as the componsnts of a column vector FL(w). This makes it possible to 
write the recursion relation for the Fourier amplitudes as 

gives a zero. (A similar formula holds for multi-letter rules.) 

FL+I(o) = M L ( ~  FL(@) (21) 

where the 2 x 2 matrix M L ( o )  has components 

This is a consequence of (U)) as Fx ~+l(o) = O F I X I ~ ( w ) .  Because of the Kronecker delta, 
the first sum in (22) runs only over those values of j for which the jth 1ette.r in the word 
c(x) is the letter 4. For example, for the coppermean rule, c(u) = ab2, e(b) = U [30,31], 

Assume that for a certain o, ML(O) is independent of L. Let Ami,, and Am, 
\Amin\ < \Amx\, be the two eigenvalues of this constant matrix, and emin and em the 
corresponding tight eigenvectors. One can express Fo(o) as 

Fo(o) = cm emax + emin (25) 
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where c,, and cmh are some constants. From (24) one has 

F L ( o ) = A ~ c , , ~ ~ ~ x  + A , ~ , , c ~ ~ % .  (26) 

Assume now that for this value of w, IFxL(w)12 scale as Lx~”x(*’, i.e. as 
Comparing this assumption with (26) gives 

This proves that at each o for which ML(o) is independent of L, there is an cr,(w)-peak 
with ax(@) given by (27). If c,, = 0 or (e-)x = 0, then (26) reduces to 

F~L(o) = ?&,,cmh (emiJx 

and Am= in (27) must be substituted by A,,,h. For instance, for ( a  H ab2, b H bab) and 
pa = Pb = I/@), = 0. c,, = 0 can occur only for a single value of s.(w)/s.&) 
(cf (24)). Provided that one can somehow realize physically this value of S&)/sb(O), it 
would be possible to ‘switch off some 6 peaks as is discussed in the next section. 

Similarly, ML(o), periodic in L with period k also gives a peak with 

where & is now the larger-modulus eigenvalue of the matrix n limf=k-l M,(w). If 
c,, = 0 (for a certain single value of s,(w)/s,,(w)), or (e-), = 0, ha. must again 
be replaced by the corresponding Amin. 

As can be seen from (22), M,(w) has the same form for all L, so that one can write 

ML(u) = M ( 6 1 ~ )  where 6 1 ~  = w LL . 
M(61) actually depends only on 61 (modl) (here modl is applied in each component of 
61). A constant matrix ML(w) corresponds to a ‘fixed point modulo 1’ 61~+1 E 6 1 ~  (mod 1) 
of the 2~ map 

6 1 ~ + 1  =SOL (mod 1) (2% 

(see (16)). Also, for all values of o for which 6 1 ~  eventually (for large L) ends up in 
this fixed point, (27) holds, and the same values of a,(w) are obtained. A ‘period k orbit 
modulo 1’ nL+k S ~ L  (mod]) of the map (29) gives a periodic sequence of ML(o). and 
thus a peak according to (28). Also, all the points Sa0 (corresponding to different values 
of U )  that are ultimately attracted to this periodic orbit, give a peak with the same value 
of ax(@). Thus, a single fixed point or periodic orbit modulo I of the map (29) may be 
responsible for peaks occumng at a generally infinite number of w values having the same 
scaling exponent ax (U). 

Of primary importance are the S peaks that comespond to the largest possible value of 
q ( w )  = 2, and thus dominate the spectrum. To obtain this discrete part of the Fourier 
intensity measure of infinite systems, which is exactly given by such 6 peaks, the following 
implication is useful (see appendix A for the proon: 

nx(w) = 2 for some ,y E A 3 p% L ~ L  = 0 (mod 1). (30) 
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Therefore, a x ( w )  = 2 can be achieved only through all the predecessors of O(modl), 
which is a fixed point modulo 1 of map (29). To obtain all the 8 peaks, it is sufficient 
to find all the values of w for which 5 1 ~  = S'blo ends up in O(mod1). Note that this 
map is the same for all substitution rules with the same S, for arbitrary tile lengths, and 
for arbitrary scattering factors s x ( o ) .  Tile lengths appear only in the initial condition for 
510. Therefore, finding out all the points a that are eventually attracted to O(mod1) gives 
a superset of the sets that support the discrete part of the Fourier intensity measure for all 
substitutional systems with the same S and all possible tile lengths. As shown in the next 
section, this superset consists of the stable manifold (if there is one) of the O(mod1) and 
of the direct predecessors of 0 (modl), and of the direct predecessors of all points in the 
stable manifold. For the given values of pa and pb, one has to select from this superset the 
subset of initial conditions that match 510 for some value of o. Finally, one has to verify 
for the given rule that for such a value of w the matrix product in (24) does not vanish 
as a result of the orthogonality of some of its terms. This product then gives directly the 
intensity of the 6 peak at U. In summary, the type of the diffraction s p e c "  is generally 
determined by the substitution matrix (except for all integer Az), tile lengths determine the 
exact positions of various peaks, and the s x ( o ) s  can only influence the relative intensities 
of the peaks. 

5. 6 Peaks (a&) = 2) 

In this section, we give a detailed derivation of the 6 peaks for different classes of primitive 
two-letter substitution rules and for arbitrary tile lengths. Let us first establish the set of 
nivial S peaks. These are the peaks that are present in every ID system, including a random 
chain, with the given tile lengths p,, and Pb.  They are given directly by all the points 
with integer coordinates in the 51 space: no = 0 (modl). For arbitrary pa and Ob, there 
is always at least one such peak corresponding to o = 0. If p = p./pb is rational, there 
are infinitely many trivial peaks at om = m/p.  for all such integer m for which there is an 
integer n = m / p .  Their intensity depends on m only through sx(w). For example, for the 
eL(a)  chain one gets, from (24) and (19), 

I,('%)= I s s ~ ( W m ) + s b ( ~ m ) l z / ( ~ p o  + P b ) ' .  (31) 
For a random chain, 5 in this equation is equal to the limit value of N,,/Nb in agreement 
with (10). 

If it is possible to choose &(Om) = -r so(wm) in @I), one can switch off at least some 
of the trivial 6 peaks. This corresponds to replacing A, in (27) by hin. In [12,141 this 
was achieved for the TM chains with p. = pb by choosing sa(w) = -Sb(O)  3 1. Only then 
was it possible to claim that the structure factor of a TM chain does not contain any 6 peaks, 
that it is purely singular continuous. The question remains whether such a special choice 
of windependent $,(U) has any physical meaning. Except for this very special situation, 
trivial peaks are present for any rational p .  They exist whether h,  is a PV number or not. 

Now let us tum our attention to the non-trivial peaks that are of actual importance for 
the classification of different structures. We want to find all solutions of (30). The trivial 
ones corresponding to the direct predecessors of 0 (mod 1) are given by 

f h = t ? S ' n ~ = O  (modl) .  (32) 
If detS # 0, which means A2 # 0, define 
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where m, n are arbitrary integers. From (6). 

f i b .  n, 0 “bbl - nNbd 
( v ( m n . 0 )  = ( n N  001 - “abi 

We claim that for all integers I ,  

511 = O(modl) 3 integer m.n such that 

7353 

(34) 

The proof is evident. Note that all trivial 6 peaks correspond to I = 0 in (35). 

qe:’ + czet’. and 
The remaining solutions of (30) can be obtained as follows. Let LO = (2) = 

Thus 

d2 = wcz e1 = orcl e2 = -wrcZ. 

By (30). we have to find the values of these coefficients that give 511 -+ 0 (mod 1). Since 
this means that both components of Sat go to 0 (mod I), we can use the following result. 
If d1 and d2 are real numbers, the two statements 

(i) dlk,  + d& -+ O(mod I) 

(2) if IAz1 > 1 then 3 L 2 0 such that dth{ + d& = 0 (mod 1) V I  > L 

(3) if p.21 = O  then 3L 3 0 such that d d ,  = O  (mod 1) V I  2 L 

are equivalent. For proof, see appendix B. 

5.1. Substitution rules with 0 < 1I.z 1 <1 

This corresponds to 0 < n,R < I + mefi. and if mer =- 2 also to 1 - m,pt < nee < 0. We 
decompose (36) as follows 

where mi, nr are integers and qrd1 tend to 0 as I 
such that 

w. Thus there exists an integer L 
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Using (B4) 

From (37). 

1 r m L + n L  m = -  
if rPa + P b  . 

Thus every 6-peak position must satisfy this formula. One can easily verify that all 

with arbitrary 1 2 0, E, Ti give di and el satisfying (38)(u), and thus represent the complete 
set of 6-peak positions. 

Using (12). the equation 

which always has integer solution for m ,  n, can be transformed into (det S) (iii T + ii) = 
(q T + s)(m T + n) .  Using this relation repeatedly f times, the set (39) can be shown to he 
equivalent to the set of 

with arbitrary I 2 0. m, n .  For a rational p. this set includes automatically all the peak 
positions given by (35). 

The Fourier module given by (40) is a Zmodule which, a priori, is infinitedimensional. 
However, it is of rank 2 when detS = f l ,  when it evidently reduces to the set 

For 0 < lA21 -= I ,  T is always irrational, thus, according to (41). all the substitutional 
systems with detS = ?cl and arbitrary p,, and pb are classical quasicrystals with &peak 
positions given by two incommensurate frequencies 1 / @ , ~  + Pb)  and a / ( p e r  + pb) .  

When detS # +I, the more general set (40) has been tentatively called ‘infinite- 
quasiperiodic’ 1201 or ‘limit-quasiperiodic’ [23]. It can be looked upon as the superposition 
of infinitely many quasiperiodic spectra (41) scaled by rational factors (detS)-’. 

Note that 

All the points nlomnl.o of (42) lie on a single straight line with the slope p b / p p ,  going 
through the origin: they are intercepts of this line with all the lines along the direction of 
et’  passing through an integer grid point. This set of parallel l i e s  constitutes the stable 
manifold of the fixed point 0 (mod 1) of the map (29). Thus the I = 0 subset of the set 
(40) of aimn corresponds to all no lying in this disconnected stable manifold for the given 
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+ + + f + + + 

Figure 2. Classical quasicrystals (0 < ]A21 < 1): the pasitions o.in of aJl 6 peaks can be 
obtained by projection in the direction 6’ = ( I ,  -r)  of all points of a square lattice with the 

lanice mnsmt (pz + pb)-f. onto the line with the slope pblpo going through the origin. 

ratio p. Similarly, one can show that all C211mn,,~ that correspond to all utnrn of (40) for 
an I z 0, are the lth generation direct predecessors of points in this stable manifold, i.e. 
Stn(lmnf,o are in the stable manifold. When detS = f l ,  the map (29) is invertible, and 
each R, point has only one distinct (mod 1) direct predecessor (i.e. all its 1st generation 
direct predecessors are equivalent mod I). For a point in the stable manifold this means 
that its only distinct predecessor must again be in the stable manifold, and this corresponds 
to the reduction of the set (40) to (41). 

The distance of C2,0mn,.o from the origin is equal to wmn (p:  + pz)G. After scaling 
the whole Cl space by the factor (0: + pi ) - ; ,  the positions umn of all S peaks can be 
obtained directly by a non-orthogonal projection in the reciprocal superspace as depicted in 
figure 2 Modifying somewhat the standard direct-space projection method [7], the same 
positions of 6 peaks as in (41) (or in the I = 0 subset of (40)) are obtained for all ID 
quasicrystals generated by projecting orthogonally all the points of the ZD square lattice 
with lattice constant (p: + p i ) ;  contained in a strip of arbitrary width U about a line with 
the slope r, onto another line with the slope p a / &  (201. Note that the square. lattices used 
in the two projections are mutually reciprocal. Also the slopes of lines involved in the two 
projections are mutually reciprocal or of opposite sign. Unlike the direct-space projection, 
the reciprocal-space projection of figure 2 is not orthogonal, and the source points are not 
contained within a strip of finite width. (Apparently, the same result in the direct space 
could also be obtained by projecting a rectangular lattice instead of the square one on the 
line with slope r [3]). 

Note also that all the Lth iterates C2,mnl,~ = SL lllomn,.o lie on a single straight line 
with slope k L  passing through the origin: 
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Also, all the points SL-' i l( lmn,.0.  L 2 1 lie on the same line. 
The values U,,," of (41) are in agreement with the previous results for the golden-mean 

systemswith r =(l+Js)/2[3,16]. F o r p . = p b = l , o m , = ( m r + n ) / ( r + l ) = i i i r + i i  
[29]. For po = r ,  p,, = 1, U,,,, = (mr t n ) / ( r 2  + I )  = (iiir t i i j / f i  I l l ,  101. 

5.2. Substitution rules with IAj I > I 
In this case, according to (38). &peaks can only correspond to the solutions of (32) which 
are given by (35). Evidently, non-uivial8 peaks exist only for rational p. For a given p 
(if not mentioned otherwise, in this subsection we will implicitly assume that p is rational) 
we &fine integers PO, uo such that p = po/uo and gcd(po, vg) = 1. We want to find all 
m ,  n, 1 that satisfy (35). Because, in (35). p ( m ,  n ,  I)/u(m, n ,  1 )  = p .  there exists k(m, n ,  I )  
suchthaty(m,n,l)=k(m.n,l)Po a n d v ( m , n , l ) = k ( m , n , l ) u o .  

First note that if (35) is satisfied for some m ,  n, 1, it is also satisfied after replacing 
m , n , l  with iii = ms - n q ,  i i=np - m r ,  and 1 - 1 because 

f i@,i i , l -  I )  = W(m,n.l) = k(m,n, l )po v@,Z, l -  1) = u(m,n , l )  = k(m.n,i)uo 

which follows from (34) and (6). This relation also gives 

k ( i i i , i i . l - l ) = k ( m , n , l ) - k o .  

Inverting (33) gives 

Assume now that 1 in (35) can be extended to infinity for the given ko. That would 
require that m, n as given by (43) be integer for arbitrary 1. This could be satisfied only if 
k&o Nod + U0 Nb.1) and k&o Nob] + U0 Nbbl) are both divisible by (detS)' = (A$.# for 
arbitrary 1. Using (14). one can see that this is not possible for any IA21 > 1. Therefore, 
for every ko there is a finite maximum value of I, denoted by lmax(ko), satisfying (35). It is 
the largest value of 1 for which (43) gives m and n that are both integers. For the given p, 
the complete set of 8-peak positions as given by (35) is then 

where ko is arbitrary. Note that here 1 is no longer arbitrary as it was in (33, and that kopo 
can assume only values 'allowed' for the given p. 

Let D = detS and f = p + s. It is an obvious general property that gcd (ko, D) = 1 
implies I,,(ko) = lm( l ) .  First assume that gcd(t, D) = 1. Then 

(45) ~ m ( k o D )  = L"h) + 1 

for arbitrary b. The proof is as follows. Let 

Since ( I / D )  S(2;)  is always an integer grid point, lm,(koD) > lm(ko) + I .  The equality 
holds if and only if 
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is not an integer grid point (because then Imar(ko) + I is the largest 1 for which m and n 
obtained from (43) when ko is replaced by koD are both integers). Using 

S2 = - D Z + t S  (47) 

where Z is the identity matrix (cf (7) for L = 2), gives 

which has a non-integer component if and only if ( t / D )  S(:;) has the same property. By 
definition of Imar(b), ( l / D ) S ( r ; )  is not an integer grid point. It cannot become integer 
when multiplied by t because gcd(t, D )  = 1. This proves (45). By induction on j ,  we get 
lm(kDj) = lmx(l) + j, where gcd(k, D )  = 1. 

When D is a prime number, we thus already know lmax(k0) for all ko and all p. Using 
this in (44). we can write the complete set of &peak positions as 

where k is arbitrary. All these positions are the integral multiples of a single number-ne 
can write them in the form 

m 
PO 

o m = - .  (49) 

Here 

PO = P A P S  - qr)"'''/m 

and m is an arbitrary integer. This set of peak positions is identical with that of a periodic 
system with lattice constant po, and we will call it periodic-like. 

When D is not a prime, the set of &peak positions depends on the values of Im(Kko), 
ko being arbitrary and K an arbitrary factor of D. The spectrum may depend on p .  and 
it can only be either periodic-like or infinite-periodic (see below) because all the &peak 
positions are mutually related by rational factors. For example, all substitution rules with 
integer eigenvalues that fall into the present category, give infinite-periodic spectra for a 
single p, and periodic-like spectra for all other rational p (see the next subsection). 

Now let us turn to the case of gcd(D, t )  # 1. Assume first that D is prime. That means 
gcd(D, t )  = D. which implies f = D because when \A*\ > 1, I < D or t < - D .  Then 
(48) reduces to 

which is always an integer grid point. Since 

is not integer, lm,(koD) = I,,&@) + 2. Thus, we again know Imar(.4o) for arbitrary ko. 
Substituting these values into (44) makes it possible to write, for any rational p ,  the complete 
set of &-peak positions as 

j = 0,1, . . . , 03 
k ~o olk = - 
pa Di 
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where k is arbitrary. This is an infinite-periodic spectrum, which can be considered to be 
the superposition of an infinite number of periodic spectra corresponding to lattice constants 
equal to Djpo, where po = p./po. It is not a subset of integer multiples of any single 
number, thus it satisfies the definition of quasiperiodicity as given in the introduction. 
However, unlike in (39) and (41), there are no incommensurate frequencies involved. 
Nevertheless. both sets of (39) and (50) are equally dense. An open question remains 
whether systems with infinite-periodic spectrum with irrational can also be called integer 
quasicrystals (as suggested in [20] for those with integer h2). 

Finally, let us consider the case when gcd(D,t) = K I  > 1 and D is not a prime 
number. Then there are integers K Z ,  KS  such that D = K I K Z  and t = K I K ~ .  and (47) reads 
S2 = KI(-KZZ + K ~ S ) .  Therefore, for (::) defined again by (46). ( K I K & ' D ~ ) S ' ~ ~ )  is 
an integer grid point. This implies that I - ( K , K : ~ ~ )  2 1,,,&0) + 2. Then the subset 
of 8-peak positions of (44) for all ko = ( K I K ; ) )  corresponding to a single value of 
I = l,,,=(l) + Z j  < l,,(ko) is 

This cannot be a subset of peak positions of a periodic-like spectrum. Since all the &peak 
positions are mutually related through rational factors, the full spectrum must be infiite- 
periodic. 

Thus we have shown that when D is arbitrary and gcd(D,t) # 1, the spectrum is 
infinite-periodic for all rational p. When gcd(D, t )  = I and D is prime, the spectrum is 
periodic-like for all p. When gcd(D, t) = 1 and D is not prime, more study is needed. 
However, the type of spectrum-periodic-like or infinite-periodic-may be different for 
different values of p. 

In addition to the periodic-like or infinite-periodic sets of 6 peaks. a diffuse part of the 
shucture factor will, also most probably, be present However, in the limit of large I ,  for 
rational p, the dominant component in the diffraction spectra will be the above sets of 6 
peaks. For all irrational values of p, there is just a single trivial 6 peak at w = 0, and 
the diffraction spectrum has a singular continuous and multifractal character (at least for 
t (a )  = a3b, t(b) = bza, as discussed in [I91 for sa = sb = I). 

5.3. Substitution rules with integer hz # 0 

In this case, A]  and q r  are also integer. Except when lhzl = 1, this class of substitution 
rules is a subset of the previous one. and all the results of the previous subsection also apply 
fully here. The 1h21= 1 case differs from the lhzl > 1 case in that I,,(!Q) can be equal to 
infinity because ID1 = A I .  

For integer lhzl > I. it is easy to find the spectrum when p = q r / r .  Then 
no = (op,/qr)e:* and n, = (wp./qr)h:e:", and defining po = pb gcd(qr, r )  / r ,  we 
can write all the &-peak positions as 

m 
wjm = - 

Po A; 

with arbitrary j > 0 and m. Therefore, for this special value of p. the spectrum is always 
infinite-periodic. 

When Ihzl = I, and p # q r / r ,  the results of the previous subsection for gcd(t. d )  = 
g c d ( h l ~ l , ~ h ~ ) = g c d ( l , h , ) =  1 apply. 
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Figure 3. Relative intensities (ln(w)/ls&)lz) of the 6 peaks for a mpper-mean system with 
po = ZPb and sa@) = 0. Trivial peaks are represented by dotted lines. 

As an example, let us discuss in more detail the copper-mean rule (a H obZ, b n a)  
[30,311, for which AI  = 2, A2 = - I ,  q = 2, r = 1 and t = 1. A copper-mean system thus 
has the infinite-periodic spectrum (is an integer quasicrystal) for po = 2pb and it has the 
periodic-like spectrum for all other p. For p = 2, it has trivial 8 peaks at on = n/pb ,  and 
non-trivial ones at 

Using (24) and (23). one can show by induction on 1 that 

and 

For the trivial peaks 

The intensity ly(oi~) decreases quite quickly with i as shown in figure 3. One can expect that 
only the peaks corresponding to the values of I less than a certain threshold can be resolved 
in an experiment, and the rest simply contribute to the background diffuse scattering. Of 
course, a similar outcome can be expected in the case of the classical quasicrystals but here 
the surviving pattem would be more regular. Thus a rather interesting question is how the 
experimentally measured diffraction spectra of a copper-mean superlattice with pu = 2pb 
would differ from those for rational p # 2, and from the spectra of periodic systems. A 
copper-mean superlattice is probably one of the best candidates to reveal such a difference 
as the above rate of the decrease of intensity with I may actually be one of the slowest 
among all integer quasicrystals. 
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5.4. Substitution rules with A? = 0 
In this case, n,a = 0 and thus the substitution matrix S is non-inve~tible. This makes the 
situation quite different from the case in subsection 5.1 although AI  is still a W number. 
Wehave A l = p + s  a n d S ' = ( p + s ) ' - ' S , l ~ I .  

According to (38), 6 peaks are given by (32) which now has solutions for any ratio 
p because of the singularity of S (because all integer grip points have infinitely many 1st 
generation predecessors). If, for integer x ,  y, 

then x = qmlgcd(9.s) and y = sm/gcd(q,s), m being an arbi!my integer. It gives 
non-trivial &peak positions at 

m 
6Jjm = - 

Pa A; 
(53) 

for arbitrary j > 0 and m not divisible by A l .  It is the same type of the infinite 
periodic spectrum as in (50). @ I ) ,  and (52) but now po = gcd(q,s)(rp, + pi,) = 
gcd ( p ,  r )  pa + gcd (9, s) pb. The main difference from the previous case is that now the 
new type of quasicrystals may exist for arbitmy real palp!,, but note that here .&/&,L 
is always rational for L > 1. However, the set (53) represents only the largest possible 
set of S peaks. Some of them need not materialize (have zero intensities) as a result of 
the orthogonality of some of the matrices in the product of (24). In fact, for periodic 
substitutional systems, which all have nee = 0, all peaks with large j must be switched off 
to get a periodic set of peaks. 

For example, a periodic chain generated by { ( U )  = {(b) = ab has 
ojm = m/((p. + Pb)2'). Its T matrix reads 

Thus TL(ojnr) = 0 for j 3 0, and the intensities are non-zero only for j = 0, for which 

where 60, = 2nmp,/(p, + pb) . 
A TM chain generated by 5(a) = ab, t ( b )  = ba has 6 peaks at exactly the Same positions 

but with modified intensities 

rzM(Wm) = r:M(Wom) = I , P ' ( ~ J ~ ~ )  ( I  +cosv,,,),)~. (55) 

For large enough L, the S peaks for pu # pb must prevail over all other peaks with 
a x ( w )  c 2 that are responsible for the singular continuous part of the spectrum, and the 
diffraction spectrum of a TM chain will resemble that of the above periodic chain. For 
pa = pb. the peaks corresponding to m = 2k - 1 are switched off in the TM case because 
1 +cosf&-l = 0, which is the consequence of the orthogonality of some mabices in (24) 
as discussed for this special case already in [17]. Thus for p. = Ph, a TM chain has only 
the trivial 6 peaks (identical with those of a random chain). For pa # Pb,  it has a set of 
6 peaks in the same positions as the periodic chain, and the larger P a / P b  + is, the 
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closer the peak intensities approach those of the periodic chain. This can be understood in 
the light of the fact that when one tile is much larger than the other one, it fills most of the 
space in an 'almost periodic way'. The formula for the Fourier transform for arbitrary o is 

where L > 2 and 

S ( W )  = .%(U) einmn* sin ( H O J ~ ~ )  - s.(o) ei*wpb sin ( H W p b )  
(57) 

c(#) = S b ( O )  einwp' COS (HO&) + &(O) COS (H6Jpb) . 
The diffraction spectra of some other TM-like systems are similar. For example for 

c(a) = ab, 5(b) = b2a2, all the peaks of (53) with l t 1 do not materialize again. Unlike 
for the TM chain, for po = pb  all the non-hivial peaks survive, and this chain diffracts as a 
periodic chain for all ratios po f pb. 

However, a different situation can be found for c(a) = ab. c(b) = ab'a (it has the 
same S. but is in a different LI class to the former ~ l e - ~ t ~  Table Il of [21]). For the 
present d e ,  all the peaks of (53) seem to have non-zero intensity. Thus, this is anolhex 
explicit example of an integer quasicrystal with S peaks at infinitely many rational multiples 
of a single frequency. Formulae for arbitrary U, po and pb are quite complicated: for L 2 1 
one has 

F . L ( ~ )  = ( t ~  + U L )  F.1 + ( V L  + W L )  f 
F ~ L ( ~ J )  = F o ~ ( m )  + E"-'[ ( tL  + W L )  F.1 + ( U L  + U L )  f 1 

Here 

F,1 = s&u) + Sb(W) ezino* f = Sb (0) + s,, (o) eznw* E = e2kS(h+flbl 

11 = V I  = W1 = vz = O  U I  = t2  = I ~2 = E  W Z =  E ' .  

For L > 3 



1362 M Kol& er a! 

Here cj; j = 0,. . . , k - 1 can assume two values, 0 and 1. Altogether, there are 2' 
different ways to choose cj. CCp represents the sum over 2'-] of these combinations for 
which k t cj = 0 (mod 2). QII represents the sum over the other 2k-1 of these 
combinations for which k + c:: c, = 1 (mod 2). For example, u3 = E6 Yz, w3 = E6 YI, 

From these formulae we have calculated the intensities of a few 8 peaks for p. = Pb 
and m = I ,  2 in (53). In this case, &,(ulm) = dIm Is&,,) - Sb(Ulm)12/(2po)2. For the 

us= Em(Y]Y9+YZY]g).  w5 =Em(YzY ,+Y ,Y jg )  ,.... 

first few values of 1, dol = O.i, - dii = 0.m. d21 = 2.323 x 
d41 = 1.159 x lo-", dl2 = 0.1, d u  = 3.18 x (m = 2 and 1 = 0 
give a trivial peak with intensity Is.(wlz) +Sb(WIZ)12/(2Po)Z ). Here the rate of decrease of 
intensity with 1 is even faster than that for the copper-mean superlattice discussed above. 

d,i = 1.560 x 
d32 = 8.660 x 

6. Conclusions 

In summary, the following classes of two-letter substitutional systems were found: 

Classical quasicrystals (two incommensurate 
spatial frequencies) 
Infinite-quasiperiodic systems (rational 
multiples, two incommensurate frequencies) 
Periodic systems (integer multiples of 
a single spatial frequency) 
Infinite-periodic systems (integer quasi. 
crystals) (rational multiples of a single 
spatial frequency) 

Systems with periodic-like arrays of 

Systems with no nontrivial 6 peaks 
non-trivial 6 peaks 

0 c [hzl < 1, h1hz # *1 

ha = 0 

lhzl > I ,  & / P b  rational (e.g. always 
when gcd(det S, p + s) # I ) ,  
or hz = integer # 0 

lh21 2 1 and p,,/pb rational, 
or A2 = 0 

p.21 > 1 and pa/& irrational, 
or& = O .  

and pn/pb = Q t / r .  Or = 0 

The Pv property c 1) supplemented with the requirement that hz # 0 is sufficient 
for obtaining a quasicrystal with either classical (quasiperiodic) or infinite quasiperiodic 
spectra. If one requires that a quasicrystal must involve some irrational (incommensurate) 
numbers, then there are no other I D  two-letter substitutional quasicrystals. However, if one 
uses a looser definition of quasicrystals as given in the introduction, which also occurs often 
in other literature (requiring a dense set of S peaks at positions that cannot be expressed as 
integral multiples of a single number), then it is possible to claim that there are quasicrystals 
with infinite-periodic spectra also for 1 for some or for all rational p. and for A2 = 0. 

The presented scheme can be easily adapted to substitution rules with an arbitrary 
number of letters. Much more interesting would be its systematic application to higher- 
dimensional substitutional systems, which has so far been done only for a few systems, 
e.g. for the Penrose tiling [32]. In higher dimensions one has much less freedom in 
choosing different tile dimensions. For example, in parallelogram or parallelopiped tilings 
the dimensions of all the different tiles are identical. In analogy with the ID results presented 
here, we can expect that the diffraction spectra of many such aperiodic deterministic 
structures with underlying periodic lattice will resemble in some way those of periodic 

, 
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crystals (have some higher-dimensional variants of periodic-like or infinite-periodic spectra). 
Could natural solids with such structures exist? Would it be possible to distinguish their 
diffraction spectra from truly periodic crystals when various defects and the Debye-Waller 
factor broaden all the peaks? Apparently the analysis of the diffuse background would be 
necessary. We think that a good test case to develop such analysis is provided by some of 
the artificial layered stmctures described by the formalism of this paper (see the discussion 
at the end of section 5.3). It might be interesting to try to do diffraction experiments on 
some of these superlattices that are either the integer quasicrystals or diffract as periodic 
lattices, to find out how their spectra differ from periodic superlattices made of the same 
building blocks. 

We are also preparing a sequel (part 11) to this paper dealing with non-& peaks with 
ay(o) e 2 (the singular continuous component of the spectrum) originating from the 
periodic orbits of the map (29) with period larger than 1. 
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Appendix A. The proof of equation (30) 

We denote by IML(o)I the matrix whose ,&entry is the modulus of the ,y@-entry of ML(o);  
x. b E A, and by 1x1 the vector whose X-component is the modulus of the X-component 
of the vector x; ,y E A. From (22) we always have IMr(o)l < S by which we mean that 
[IML(w)II,~ < Sx4 for all X, @ E A. If for some (x. @). [ IML(OI)II~~ c S,,, we write 
IML(W)l c S. 

is the largest-modulus eigenvalue of 
ML(w): e?' be the left eigenvector of S associated with A I  (cf section 3). and eLmax 

be a right eigenvector of M L ( o )  associated with A',,,& e:l)S = Ale?), ML(o)eLma.. = 
ALmaneLmax. men 

l h m x l ~ l  leLmarl = el IML(4eLmrl 6 el I&(w)l leLml < e:L'SleL,,l 

because both components of e!' are positive. From this 

We first prove that lhLmarl < A,. where 

I!' (1) 11' 

(AI) 

Since e?' leL-1 > 0, (Al) implies !Arm/ < AI, which was to be proven. If l M ~ ( o ) l  < S, 
one can show in the same way that l A ~ ~ ~ ~ l  e AI  because S has positive offdiagonal entries. 
As a consequence of this, we can say that if ( A L , , , ~ ~  = AI then lM~(o)l= S. 

is the largest- 
modulus eigenvalue of TL(w): from (24). IT'(o)l = In!=,-, M&) I < n! = -  ' ! IMl(w)l < 
S'. Therefore, It~,,,~~l < n,='-, IAlmax(w)1 < AI'. If I ~ L ~ J  = At as L 3 00. then 
~ l = L - l ( I A ~ , , , ~ ~ / A ~ )  + 1 as L -+ 00, and since IAL,,,~~ < AI  for all L, Ih~,,,,l -+ AI  as 
L + 03. 

11) I A L ~ ~ ~ ~ ~  leLmarl < A I  e!'leLmaxl. 

Now we prove that l t ~ , , , ~ l  %A: ==+ limL-,w I A L , , , ~ ~  =AI, where 

0 

0 
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Next we prove that ax(@) = 2 IimL,, lM~(o) l  = S. Assume that the negation 
is true: ax(@) = 2 for some x E A and l M ~ ( w ) l  does not converge to S. Since 
DL(w) S - l M ~ ( w ) l  is a non-negative matrix. this means that 3q > 0 VLo 3L > Lo 
such that at least one of the entries of &(w) is greater than q. This can be written in a 
'compact' way: 3~ > 0 (E  now being a 2 x 2 matrix) VLo 3L > LO such that &(U) > E. 

Then (S - E )  > [ ML(w) 1. Since (S - E )  < S, the larger eigenvalue A, of (S - E )  is strictly 
less than AI  and goes to At  when E goes to 0, we have 

AI  > .I, > max[eigenvalues(lML(w)I)l > IAL-I 

which means that IAL-~ cannot converge to A t ,  which is in contradiction with cyX(w) = 2. 
Thus IimL,, lM~(w)l  = S. Note that the converse is false. For instance, in the golden- 
meancase,(awab, b w a ) ,  l M ~ ( o ) l = S  V(L.0) butthereexistsosuchthatax(w)#2 
for a x E d. 

Let us now consider a substitution such that for some x ,  @ E A and k an integer. e k ( x )  
contains +z (this is always satisfied except for certain periodic ("(x)).  If .$ is a primitive 
substitution, is also primitive and gives the same stmcture factor. This allows us to 
work with ek instead of e without any modification of the physical problem. Thus we can 
assume that e ( x )  itself contains +* (otherwise we replace e by ex) .  Let ko be such that 
e ( x ) [ k o ]  = e(x)[ko+ 11 =+,and let IimL,, lM~(w)l  = S. This convergence implies that 
for all k and k' such that e ( x ) [ k l  = 6(,y)[k'l, 

which gives 

It remains to prove that the other component of f 2 ~  converges to O(mod1). We denote by 
@' the other letter of A. From (A3) we have 

Then, if Sddt # I (i.e. Sd6 > 1 because it is an off-diagonal entry of S), there exist k and 
k' such that k -z k', e(+)[k] = t(+)[k'] = +', and fork < j < k', &+)[jl = @. Then from 
(U, 

which was to be proven. In the periodic case, a direct calculation shows that (30) holds, 
too. 
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Appendix B. The proof of (38) 

B1. (ij=+(iij 

Let mr be an integer such that dt A; + 44 = ml + 61, where 0 4 €1 4 f. We claim that 

3L such that m1+2 - mcffml+l - ncffmr = 0 VI 2 L (Bl) 

and 

m l = d L i { + p g  V I 2 L .  (B2) 

Actually, ml+z-m,amc+~ -nafml = dl A: (A?-mafAl -neff)+dzA',(A.Z-m,trhz-n,rr)+ 
61+z - mm6l+l - n.ff61. The first two terms on the right-hand side are zero, and so the 
left-hand side is a sequence of integers converging to zero. This proves (BI). Clearly, there 
exists a couple a, B such that 

(B3) mL=aA:+f3Ak mL+I = a h l  L+I + B&L+l . 
Using (Bl), this implies 

L m ~ + 2  = a AI  (me& + nee) + ,9 h2" ( m d 2  + n,a) = a A f f 2  + f3 GZL+' 
and (B3) will be proven once the equality a = dl is established. By definition, 
61 = (d~-f f )A' ,+(&-B)Ai  VI 2 L. Since A1 > max(l,IA21), d l - a  = l imr+m6#,  = 0. 
Finally, from (€33). 

Thus (38)(ii)(l) is proven. Note that A2 = 0 implies that hl is an integer, then (B4) 
implies (38)(ii)(3). If p.21 c 1, there is clearly no restriction on d2 while for p.21 2 1, 
61 = (4 - B )  A', does not converge to zero except when p = dz. Thus €1 = 0 VI 2 L, 
and (38)(ii)(2) holds. 

B2. (iij ==+ (ij 

First note that the sequence of positive integers 

A+2 = mcfifi+l + neaA = 0 f~ = 1 

is of the Fibonacci type and 

Thus 

goes to zero (mod I )  when 1 -+ 00. 
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