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Abstract. The recent generalization to the case of arbitrary tile lengths and arbitrary scattering
factors of the calculation of the structure factor of tD substitutional systems is studied in detail,
This method makes it easy to find all the peaks in the diffraction spectrum of a system. The
well known periodic and quasiperiodic spectra with § peaks at integer multiples of a single
number and integer linear combinations of two incommensurate frequencies, respectively, were
found to be the / = 0 subsets of two more general types of specira, infinite-periedic (or limit-
periodic) and infinite-quasiperiodic (or limit-quasiperiodic) characterized by rational numbers of
the type m/n', { = 0,..., 00 in place of the above integers. Substitution rules that produce
quasicrystalline quasiperiodic and infinite-quasiperiodic spectra give the same type of spectium
for all values of the ratio p = p,/pp of the two tile lengths p, and pp. This is not the case
for the other rules. Thus the same substitution rule {such as the copper-mean rule} can give an
infinite-periodic spectrum for a single rational ratio p = pg/pp of the two tile lengths p, and
Pu, a periodic-like spectrum for other rational p, and a spectrum in some aspects similar to that
of a random system when p is an ircational number. On the other hand, a Thue-Morse system
diffracts as a periodic crystal when o # 1 but has no non-trivial § peaks when p = 1. Other
Thue~Morse-like systems can have infinite-periodic spectra for all .

1. Introduction

The discovery by Penrose [1] of the existence of non-pericdic tilings with long-range order,
and the first experimental indication by Shechtman et af [2] that such quasicrystals may be
obtained under certain conditions in nature, stimulated extensive theoretical investigation
of the properties of 1D, 2D and higher-dimensional deterministic aperiodic structures that
are now believed to populate rather densely the previously unexplored territory between
the periodic and random lattices. Though at least 2D models are needed to explain the
properties of ‘natural’ quasicrystals, the study of 1D structures, besides being useful for
testing of methods that can usually be applied to arbitrary-dimensional systems, is especially
important in the light of the recently developed experimental techniques to manufacture
arbitrarily ordered layered structures [3, 5], and to analyse them in terms of high-resolution
x-ray diffraction spectra [4].

Two general methods are used to generate deterministic aperiodic lattices of various
dimensions: (i) projection from a higher-dimensional periodic lattice {6, 7] (or its varions
higher-dimensional generalizations [8]), and (ii) repetitive use of substitution (inflation) rules
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starting with a simple seed [$]. While the former method can give only quasicrystals (defined
by dense aperiodic arrays of Bragg peaks in their diffraction patterns), the latter method can
also preduce many interesting aperiodic systems that are not quasicrystals (e.g. Thue—Morse
superlattices). Conversely, there exist projectional quasicrystals that cannot be generated by
a single substitution rule. When calculating the stmcture factor of a substitutional system, it
is easy to consider different scattering factors of the different building blocks as can be seen
in this paper. On the other hand, the projectional quasicrystals studied so far were obtained
from higher-dimensional periodic arrays of identical scatterers, and it is not obvious how to
take into account different scattering factors of the two or more elementary building blocks
in the projection {cut-and-project) method.

Here we deal only with 1D substitutional systems generated by substitution rules on an
alphabet of v letters {9] representing v elementary building blocks (tiles) of the system.
By definition, the structure factor (Fourier transform) of 1D quasicrystals has 8-function
(Bragg) peaks the positions of which cannot be expressed as integral multiples of a single
spatial frequency (wavevector). The first attempt to answer the question of which of the
1D substitutional systems are quasicrystals was made by Bombieri and Taylor [10], who
conjectured that a sufficient condition for such a system to be a quasicrystal is that the
Perron—Frobenius eigenvalue X of the substitution matrix be a Pisot-Vijayaraghavan (PV)
number. As the entries of a substitution matrix are all integers, this is equivalent to requiring
that {A;| > 1 and all other [A;| < 1. Other authors [3, 5, 11-19] studied in more detail several
special systems, mainly with special values of the tile-length ratio p. In ail these studies
either the lengths of different tiles or the corresponding scattering factors differed but not
both. Most of these studies were based on individually derived recursion relations for
the structure factor of finite approximants of a single infinite chain. A unifying scheme
readily applicable to all substitutional systems was developed by Koldf [20] using the
matrix formulation [17] of the recursion relations, some elements of which were already
present in [13] and recently in [19]. In this scheme, one calculates simultaneously the
structure factors for a whole group of related infinite chains—the canonical chaing [21,22]
generated by the given substitution rule from all possible single-letter seeds. This results
in the recursion relations for the structure factor having a simple and transparent matrix
form. The simultaneous treatment of all canonical chains proved to be very advantageous
also for the calculation of the spectral properties of these systems as expressed in terms of
transfer-matrix-trace maps [21,22). As in the case of the transfer-matyix traces [21), the
structure factor of an arbitrary chain (obtained from an arbitrary seed) can be expressed in
terms of the structure factors of the canonical chains. Luck et al [23] recently also studied
the structure factor of a large class of substitutional systems along similar lines. See also
the work of Combescure on the quantum autocorrelation function of the Hamiltonian of the
kicked rotator {24].

Cheng and Savit [17] formulated their scheme only for two-letter 1D substitutional
systems with both tiles of equal length, and applied it only to a few substitution rules.
A lot of confusion still remained, e.g. as to the interpretation of the Bombieri and
Taylor results—perhaps related to the problem of a suitable definition of a quasicrystal
(cf [10,13,14,16,17,20]). Recently, Koldf [20] obtained the positions of the & peaks (i.e.
the diffraction spots) for all two-letter substitutional systems with arbitrary tile lengths
Pz and py, and arbitrary scattering factors s,{w) and s,(w) of the two tiles. Based on the
arrangement of the § peaks, all two-letter substitutional systems fall roughly in the following
classes: (i) periodic systems with & peaks at integral multiples of a single number, (ii)
‘classical’ quasicrystals with 3 peaks at integral linear combinations of two incommensurate
spatial frequencies, (iii} infinite-periodic systems with 8 peaks at certain rational multiples of
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a single spatial frequency, (iv) infinite-quasiperiodic systems with & peaks at certain rational
linear combinations of two incommensurate spatial frequencies, (v} aperiodic systems with
periodic-like non-trivial §-peak positions, and (vi) aperiodic systems with no non-trivial &
peaks. The most interesting situation (infinite-periodic or periodic-like spectra) can be found
among the systems with an integer Perron—Frobenius eigenvalue A, or when |A3] > 1 and
the ratio p = p,/p is rational. Thus the class of systems with A, = 0 includes all two-letter
periodic systems and many of the new infinite-periodic systems. It also contains aperiodic
systems with periodic-like spectra, such as a Thue-Morse (TM} chain with unequal tile
lengths. The periodic-like spectra are even more abundant for [Az| > 1 than was reported
in [20] (see section 5.2). Nevertheless, periodic-like spectra for |Az] > 1 do not represent a
generic case because they are not robust under perturbation on p.

For structures other than the classical quasicrystals and infinite-quasiperiodic systems
(ie. when |Az] 2= 1), the presence of the § peaks in the structure factor is generally not
uniquely given by the used substitetion rule; it also deperds on p: for a rational p, the
spectrum is infinite-periodic or periodic-like, while for an irrational p, there are no § peaks
except a single trivial one. For example, a copper-mean system (A = —1) has an infinite-
periodic spectrum for a single rational value of p, can diffract as a periodic crystal for other
rational p, and diffracts essentially as a random system for all irrational p. In the case of the
TM substitution rule (which has the Pv property) the situation is opposite in a sense: except
for a special choice of the ‘atomic’ scattering factors there is always a periodic array of &
peaks in its structure factor. (This special choice of the atomic scattering factors, apparently
of little physical significance, was used in the previous studies [12, 14, 17] of the T™ chains,
which led to occasional claims that a TM chain does not have 8 peaks at all.) If the two
tiles have different lengths, the periodic set of d-peak positions is exactly the same as an
{existing) periodic system, while it contains no non-trivial & peaks if the tiles are of the
same lengths {i.c. for a single value of p). However, the sets of all peaks, including those
with scaling exponent smaller than 2 (which is the value for the § peaks) are very similar in
the T™ and copper-mean systems as will be shown in a sequel to this paper. Hopefully these
results can shed some light into the ongoing discussion [25,26] on whether these systers
are more random or more periodic than quasicrystals.

Luck et qf {23] also got the infinite-quasiperiodic spectrum (they call it limit-
quasiperiodic using the term of Githler who is, as far as we know, the first who pointed out
the existence of this kind of spectrum). They used 5, = 5, = 1 and mostly a single irrational
value of p, and studied only the rules with irrational A;. Thus they were outside the region
where infinite-periodic spectra can be found. They concentrated on the relation between
classical quasicrystals and certain periodic structures (atomic surfaces) in a 2D superspace.

The rest of the paper is organized as follows. In section 2 we discuss the importance of
canonical chains. In section 3 we summerize the properties of substitutional sequences and
1D systems based on such sequences. In section 4 we give all the details of the procedure
for the structure factor calculation for arbitrary tile lengths. In section 5 we present a
detailed derivation of the positions of the § peaks and discuss some specific examples. In
section 6 we summarize our results, and give some suggestions for future experiments.
Some technical details are given in two appendices.

2, Canonical chains

Let us first define the notation. A is a set (alphabet) of v letters a;, i = 1,...,v. A% is
the set of all words over A of length &, and A* = U A%, The length of a2 word w € A*
is |wl, and its letters are wi}; i =0,..., w| — 1. The empty word is &: Je] =0, e€.A°,
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a* denotes & adjacent letters a, and a® = £. A v-letter substitution rule £ is a map from A4
into A*. It is often written out as ¢; — §(a;); i=1,...,v, where

E(a) = ay.090.0 " Bpig-1py € A ki = &) . (1)

The mapping § can be extended in a natural way to words over A*. N,q. is the number
of occurrences of letter x in the word ££(¢).

In physical applications, the v letters a; are assumed to represent v different elementary
building blocks of a one-dimensional chain or layered structure {9]. Each § produces v
canonical substitutional sequences (or chains) {21,22] £%(a;) = limy—o0 £¥(a;), such that
E%a))=a;, and X (a;) = E(EL(a)); i = 1, ..., v. Some or all of £%(g;) can be identical.
&% (a;) are called the Lth generation canonical chains. By induction, one can prove that (1)
leads to the infiation (juxtaposition) rule

gLt (@) = M (ay @) - - EX @y g-10) - 2

For some £, the limits above need not exist in the strict sense for some or even all i because
the corresponding £ £(a;) oscillate between successive approximations to infinite words that
are the points of a pericdic orbit of &, The respective §*(a;) then denote these points (in
some order). In this sense, for example, {a> bab, b a) gives {E™(a;)} = {ababab...,
bababa...}.

Canonical chains are simply the chains that are obtained from the simplest possible
seeds—the letters of A, They are useful for expressing the properties of chains C;, Co
obtained from an arbitrarily long seed Cp: Cp = £%(Cy). Evidently

Cp = EH(ColODEH(ColIDEH(Col2D) - - = §" (@) (@) H(a) - -« (3)

where i; is the index of the jth letter of Co: Colj] = a;; . In [21] it was shown (at least
for two letters) that the spectral properties of C; as expressed in terms of traces of certain
transfer matrices are uniquely determined by the canonical chains £ (a;).

The trace of the transfer matrix associated with C, is simply given by a polynomial in
the traces of the transfer matrices associated with £2(q;). Thus the trace associated with
C, is simply a ‘slave’ of a certain trace map given uniquely by §%(a;). This trace map is
not at all influenced by the trace associated with C;, and is the same for all C;. In the
formulation of Bovier and Ghez {27), the seed Cy is the only additional {composite) letter
that must be added to the original alphabet A to get the trace map determining the spectral
properties of Cy. This *letter’ is passive in the sense that the associated trace never occurs
on the right-hand side of the equations of the extended trace map, which is just the trace
map for all £%(a;) supplemented with one passive equation for the trace associated with
Cp. This additional equation is just the polynomial mentioned above.

A similar situation exists in the case of the structure factor. We show in section 4
(equation (20)) that the structure factor associated with C, is a linear combination of the
structure factors associated with %(a;). Structure factors of all £L(a;) are determined by
a certain ‘structure factor map’ that gives the structure factors of £2(a;) in terms of those
of §4~'(4;). Generally, all the structure factors of £X~'(g;) are needed to determine the
structure factor of each £%4(a;).

Here we study the structure factor of non-periodic structures (canonical chains)
constructed by arranging in a line the minimum of two building blocks using a two-letter
substitution rule. The generalization of the whole procedure to the case of more building
blocks (v > 2} is straightforward.
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3. Two-letter substitution rules

Denoting the two letters 2 and b, A = {a, b}, and a general two-letter substitution rule can
be written in the form

&(a) = apyla, b) §(B) = Brs(a, b} @

where apg(a, b) [Brs(a, b)] denotes a string of total length p + 4 [r + 5] consisting of a
certain permutation of p [r] letters @ and g [s] letters . The corresponding canonical chains
are, in this case, £%(a) and £%(b), and (2) can be rewritien as

1 a) = apg (8 5(@), 52 (B)) EXTN D) = B (6N (@), E5 (B)) L>0, &}

The primary objects of our investigation are infinite non-periodic self-similar chains with
long-range order. To eliminate the cases which deviate most from this category, we consider
only the primitive substitution rules, which means that (p 4+ s} g r # 0. Then both £*(a)
and &°°(b) are infinite. However, some of the primitive & still give periodic or almost
periodic chains.

The same substitution matrix & = (77} is shared by (";‘?) ("F¢) different rules of type (4).
All such rules give the same numbers Nygp:

Naat NbaL)
Sk=| 4 L>0. 6
(NabL Npor z ©

The same recursion formula

Nysr = (p +58) Nypr-1 +(gr — ps) Nygr-2 )

holds for all x, ¢ € .A, and also for |5 (@)] = Nagr + Nipgr. Denoting p + 5 == negr and
gr — pPs = Ry, equation (7) acquires the same form as the formula for the generalized
Fibonacci numbers [28], which is a special case of (7) with p =m, ¢ =n, r = 1 and
s = 0. Unlike » of a generalized Fibonacci substitution [£(a) = a™b", £(b) = al,
R can also assume negative values. The roots of the characieristic equation of the
difference equation (7) are real numbers equal to the eigenvalues of the substitution matrix

S, ki = 3 (meg + Jm2g + Anegs), Ay = L(mest — (JmZy + dneg). Ay is a PV number if

Azl < 1. A; is also called the ‘mean” of the corresponding rule. Equation (7) can be
rewritten as

Nyot — & Nygi1 = da (Nypr—1 — M Nypr-2) X, ¢ € A. (3

Thus, as L — co, |Nygs — A Nygr—1| goes to zero if |Az| < 1 (when A, is a PV number),
is constant if [A;| = 1, and diverges if |Ay| > 1.
For primitive substitutions we have (cf (14) below)

. N
ngm—;ff=xl X9 €A ©)
X
and
N N
tim —2L = lim —2£ = ¢ (10)

Loo Npgp  L+oo Ny
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where
_M—-s r  _p=h
T g M~p g s~k
is also called the ‘incommensurability” of the rule. Equation (11) gives
gtt=(p—-s)t+r. (12)
The right and left eigenvectors of S, Sef” =1 e and e’ S =2, e, i = 1,2, are

=(T) w=() d-en Peov-m.

Applying St as given by (6) to these eigenvectors, one can derive explicit formulae for all
Ny4. and various relations between them. For example, using the left eigenvectors gives

T Naar + Ngpr = r)"f' T Nba,l.. + Nppr = )‘-%

>0 (11}

r Naar, — qt Napy =r A% r Niar, — q7 Nop, = —qT A3 .
(13)
The first two of these formulae give, for example,
(8@ — M IEF @D T + R B = M EX' @) =0

(alternatively, this can be proven by induction starting from L = 1 and using (8)). All four
then give

24L L L L
qTiAy +ri; qT (A} = A3)
Nogr = 2172y, =T 4
aal qri+r bal qti+tr
(14
rr (A —ah) rir 4912l
= N S N = N .
Nasr p g bbL pcp I Npar. = q Nasi,
Similarly, S el = AL el gives
NaaL = T Npa, = A5 Nast — T Noppr = =T A5 (15)
or

T (Naar — 7 Npar) + (Napr — T Nppr) = 0
and for jAz] < 1 both terms in this sum go to zero independently as L —» oo,

Non-primitive substitutions can also be of interest, for instance, if ¢ = 0, then
Nigt = 0, Napz, = r (st = pL)/(s = p), and v = limproo(Napr/Nppe) = r/(s — p) if
p < s and oo otherwise. If r = 0, then Ny = 0, Npar = ¢ (s¥ — p*)/(s — p), and
T = limg o o{Naar./Npsr) = (p — 8)/g if p > 5 and zero otherwise. In both these cases,
Naar = p*, Nppr, = s, Ay = max (p, 5) and Xy = min (p, 5).

For the study of diffraction a rather simple model of the two building blocks of the 1D
physical chains based on & (a) and £%(b) will suffice. The building block associated with
the letter ¢ is fully characterized by a length (tile) py and an ‘atomic-like’ scattering factor
54 (ew) (see figure 1). Let us denote by £,; and Lp; the total lengths of such Lth generation
physical chains £%(a) and £%(b), respectively, Then

L= (‘C"L) =8L,,=8" ("’“) (16)
Lyt Py

and for all primitive substitutions, we have

o Laryr o L
l!lbngo LaL _Lllrngo Lyt =4 (17)

This means that both £,; and £ scale with L as A, L.
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Figure 1. The two building blocks a and & are characterized by tites of length g, and o5 (e.8.
in 2 superlattice equal to the thicknesses of two different layers the boundaries of which are
indicated by thin dotted lines) and by wavevector dependent scattering factors 5, () and sp(a),
representing continuous or discrete distribution of suitable scatterers along the tiles.

4. Structure factor

The diffraction spectrum of a certain target is determined by the Fourier transform of the
density of scatterers of the radiation used to probe the target, e.g. the electron density in
the case of X-rays. This Fourier transform is usually called the structure factor of the
target. The structure factor (or its x-component along the direction of the chains) of the
two physical canonical chains ££(a) and £+ (b) (linear arrays built according to & using two
different building blocks as indicated in figure 1) is evidently

W txd~1
Feo@) = Y serpppm(@)ed™ond 00 ye g, (18)
n=0

Here xg(¢%(x)) = 0, Xpsn (E“(x)) = xa(EL (X)) + pgrixyny (of figure 1), @ is equal to the
x-compenent of the difference of the wavevectors of the scattered and incident waves,

pe Zinrw:r
sg{w) =/; op(x)e dx

is the scattering factor (referred to the beginning of the block) of the building block ¢,
and o,(x) is the density of the respective scatterers inside this biock. For example, if
op(x) = 0, 8(x — pp/2) (a single scatterer at the centre of the tile), s,(w) = ope™Pe, If
0s(x) = const, then sy(w) = oy ™" sin (Tawpy)/mw.

The structure factor of £*(x) can be obtained as the limit of the structure factors of
the finite approximants £2(x): Fieo(®w) = limy oo Fyo(w). We then say that there is an
ay (w)-peak in the structure factor of the infinite chain at an w, if there exists a positive
number a, (@) such that | Fy; ()| scales as £, Then

o In{Fyp ()l
=2 —
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A 2-peak is called the & peak as it gives the Dirac §-function in [Fye(w)[%. The intensity
of an o, (w)-peak is defined as

2
I@) = lim @ xe(@)l

. 19
L—roo [,xL“x("” (i9)

Note that e, (@) < 2 for both y € A because

Lzl
[P € Y Isgtom@)

n=0

Lix)-1
Isa ()| ls:,(w)l)‘E X (lsa(wn |sb(w)a)
< max | ——~—, ——— =max| ——, ——— | Ly1.
h ( Pa Py g Aol Pa Py xt

Consequently, I () < max (Is,(@}|/pa. Is6(e}|/ pp) when ey (@) = 2.
Evidently, the structure factor ®¢, L(@) of an arbitrary chain C, of (3) can be written
in terms of the structure factors of the canonical chains as

[Coi—1 ) j-1
D) = Z FeotjiLi{w) exp (Zirrw Zﬁcomz.) (20)
j=0 k=0

where by convention, Z}Z:lo gives a zero. (A similar formula holds for multi-letier rules.)

As in [17,20], it is convenient to consider the two Fourier amplitudes Fpp(w) and
Fyy (@) of (18) as the components of a column vector F(w). This makes it possible to
write the recursion relation for the Fourier amplitudes as

Fr () = M (w) Fr(w) 21)

where the 2 x 2 matrix M, (w) bas components

[E(x)]-1 -1
(Mr{)lye = Z 8ecilj).4 XP (Zi:rcoZC;(x)[k] L) x.pe A (22)
j=0 k=0

This is a consequence of (20) as Fy p+1(w) = gy (w). Because of the Kronecker delta,
the first sum in (22) runs only over those values of j for which the jth letter in the word
&(x) is the letter ¢. For example, for the copper-mean rule, &(a) = ab?, §(&) = a [30,31],

1 efirela (1+ eﬁnwﬂu) )

(23)

M (w) = (1 0

As Fpo(w) = sp(w) and Fyg(w) = sp(w), (21) gives
0

RO =Twhe Rw=(32)  nw=|[]mw] e

sp{w) LY
Assume that for a certain @, Mp(w) is independent of L. Let Ammn and Amax,
Pminl € JAmaxl, be the two eigenvalues of this constant matrix, and epn and €max the
corresponding right eigenvectors. One can express Fo(w) as

Fo(@) = Cmax €max + Cmin Emin (25)
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where Cmax and ¢y, are some constants. From (24) one has
Fp(®) = AL, Coax €max + ALy Conin €min - (26)

Assume now that for this value of w, |Fyr(w)) scale as £, ie, as A",
Comparing this assumption with (26) gives

In |Amax|

ax@) =23+

if  (emm)y #0. e

This proves that at each o for which M;(w) is independent of L, there is an o, (w)-peak
with e, (@) given by (27). If cpex = 0 or (Epax), = 0, then (26) reduces to

FxL(ff-’) = A-;I{dn Cmin (emin)x

and Amax in (27) must be substituted by Anin. For instance, for (2 — ab?, b+> bab) and

Pz = Py = 1/(20), (Emax)s = 0. cmax = 0 can occur only for a single vatue of s, (@) /sp(w)

(cf (24)). Provided that one can soimehow realize physically this value of s,(w)/sp(w), it

would be possible to ‘switch off” some & peaks as is discussed in the next section.
Similarly, M, (w), periodic in L with period & also gives a peak with

2 In [Amax|
“x(w)=z l_[n;.“:x

i (emm)y #0 @8

where Ama; is now the larger-modulus eigenvalue of the matrix []lim} ,_; Mi(w). If
Cmax = 0 (for a certain single value of s,{w)/sp(@}), OF (€max)y = 0, Amax must again
be replaced by the corresponding Amin.

As can be seen from (22), M, (@) has the same form for all L, so that one can write

M (w) = M(ES2) where 2, =wl;.

M(§2) actually depends only on £ (modl) (here mod! is applied in each component of
§?). A constant matrix M (w) corresponds to a ‘fixed point modulo 1" £, = §2. (mod 1)
of the 2D map

Qr =S (mod 1) (29)

(see (16)). Also, for all values of @ for which £, eventuaily (for large L) ends up in
this fixed point, (27} holds, and the same values of &, (w) are obtained. A ‘period & orbit
madulo 1° 2,4, = §2; (modi) of the map (29) pives a periodic sequence of My (w), and
thus a peak according to (28). Also, all the points £2 (corresponding to different values
of ) that are ultimately attracted to this periodic orbit, give a peak with the same value
of &, (w). Thus, a single fixed point or periodic orbit modulo 1 of the map (29) may be
responsible for peaks occurring at a generally infinite number of e values having the same
scaling exponent a, (@).

Of primary importance are the § peaks that correspond to the largest possible value of
oy (w) = 2, and thus dominate the spectrum. To obtain this discrete part of the Fourier
intensity measure of infinite systems, which is exactly given by such & peaks, the foliowing
implication is useful (see appendix A for the proof):

oy (w) =2 for some YeA= Llim 2; =0 (mod 1). 30)
-+00
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Therefore, a,(w) = 2 can be achieved only through all the predecessors of @ (modl),
which is a fixed point modulo 1 of map (29). To obtain all the & peaks, it is sufficient
to find all the values of  for which £, = St ends up in 0 (modl). Note that this
map is the same for all substitution rules with the same S, for arbitrary tile lengths, and
for arbitrary scattering factors s, (). Tile lengths appear only in the initial condition for
€. Therefore, finding out all the points {2 that are eventually attracted to 0 (mod1) gives
a superset of the sets that support the discrete part of the Fourier intensity measure for all
substitutional systems with the same & and all possible tile lengths. As shown in the next
section, this superset consists of the stable manifold (if there is one) of the § (mod1) and
of the direct predecessors of 0 (modl), and of the direct predecessors of ail points in the
stable manifold. For the given values of o, and p,, one has to select from this superset the
subset of initial conditions that match £2y for some value of w. Finally, one has to verify
for the given rule that for such a value of w the matrix product in (24) does not vanish
as a result of the orthogonality of some of its terms. This product then gives directly the
intensity of the § peak at w. In summary, the type of the diffraction spectrum is generally
determined by the substitution matrix (except for all integer 4;), tile lengths determine the
exact positions of various peaks, and the s, (@)s can only influence the relative intensities
of the peaks.

5. & Peaks (a, (w) = 2}

In this section, we give a detailed derivation of the & peaks for different classes of primitive
two-letter substitution rules and for arbitrary tile lengths. Let us first establish the set of
trivial & peaks. These are the peaks that are present in every 1D system, including a random
chain, with the given tile lengths p; and pp. They are given directly by all the points
with integer coordinates in the £2 space: £2p = 0(modl). For arbitrary p, and g, there
is always at least one such peak corresponding to @ = 0. If p = p,/pp is rational, there
are infinifely many trivial peaks at w,, = m/p, for all such integer m for which there is an
integer n = m/p. Their intensity depends on m only through s, (w). For example, for the
£L(a) chain one gets, from (24) and (19),

L{om) = |7 Salwm) + Sp{@m)® / (00 + £0)° . (31)

For a random chain, 7 in this equation is equal to the limit value of N,/N, in agreement
with (10).

If it is possible to choose sp{wm) = —T sa{wy) in (31), one can switch off at least some
of the trivial & peaks. This corresponds to replacing Ayae in (27) by Amn. In {12, 14] this
was achieved for the TM chains with p; = py by choosing s,(w) = —sp(w)=1. Only then
was it possible to claim that the structure factor of a T™ chain does not contain any 8 peaks,
that it is purely singular continuous. The question remains whether such a special choice
of w-independent s, {w) has any physical meaning. Except for this very special situation,
trivial peaks are present for any rational ¢. They exist whether A, is a Pv number or not.

Now let us turn our attention to the non-trivial peaks that are of actual importance for
the classification of different structures. We want to find all solutions of (30). The trivial
ones corresponding to the direct predecessors of § (mod 1) are given by

Y =8w=0 (mod 1). (32)
If detS 5= 0, which means A; # 0, define

(M(mo n, l)) = (detS)’ S-f ('::) (33)

vim,n, D)



Structure factor of 1D systems. I 7353

where m, n are arbitrary integers. From (6),

(,u,(m,n, 1)) _ (mme - ﬂNba!) i (34)

vim,n,1) nNgat — mNapi
We claim that for all integers /,

£}, = 0(modl) <=> 3 integer m,n such that

_ ulm,n0) Pz lm,n,l)
" palps —qr)t and P vmnh

The proof is evident. Note that all trivial § peaks correspond to { = 0 in (35).
The remaining solutions of (30) can be cbtained as follows. Let Ly = (%) =

c:E‘,'} + cze‘zn. and

(35)

. diAl + daAd
=8 (eik‘l+ezz\2)' _ (36)
Thus
Tos + P rPa ~ 4TpPp
€] = ———— Cp = ———— dy = wqtc
Trmma T Tn—a AT 37
dr = wes e, = wre £ = —WTCa.

By (30), we have to find the values of these coefficients that give £3; — 0 (mod 1), Since
this means that both components of £ go to 0 (mod 1), we can use the following result.
If d\ and dy are real numbers, the two statements

(0 dixl +dsal —> O(mod 1)

mniy
My —2) (38)
(2)if [Az| > 1 then 3 such that d(A} +dar, =0 (mod 1) VI L

Lz0
@) if |Aa| =0 then 3L >0 suchthat diA, =0 (mod 1) VIS L

(ii) (NDif0<]iz] <1 then 3L >0,m,n suchthat d; =

are equivalent. For proof, see appendix B.

S.1. Substitution rules with 0 < |Az| <1

This corresponds to 0 < neg < | + ey, and if meg > 2 also t0 1 — Moy < Ree < 0. We
decompose (36) as follows

e (2)+()
n; €'

where my, n; are integers and €, €’; tend to 0 as I — oo. Thus there exists an integer L

such that
(mm) _ S(m’) Vi>L.
Ril Ry
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Using (B4)
g = P T mAy  (pd)mytgnL g{tmy+ny)
AL — A) M (g —A) AL (A = 2)
From (37),
_ I tmy+ny
M Tty

Thus every -peak position must satisfy this formula. One can easily verify that all
1 tm4n

W= T
Ay TP+ P

(39)

with arbitrary ! > 0,7, 7 give d) and e, satisfying (38)(ii), and thus represent the complete
set of -peak positions.
Using (12}, the equation

(detS) @ =s(’:)

which always has integer solution for m, n, ¢can be transformed into (detS)(mt +n) =
(g T+ 5)(m T + n). Using this relation repeatedly / times, the set (39) can be shown to be
equivalent to the set of

_ 1 tm+n
T (et SY o, + oo

with arbitrary / 2 0, m,n. For a rational p, this set includes automatically all the peak
positions given by {35).

The Fourier module given by (40) is 2 Z-module which, a priori, is infinite-dimensional.
However, it is of rank 2 when det§ = X1, when it evidently reduces to the set

(40)

Oimn

_ mt+n
PaT+pp

mat (41)
For 0 < |Az] < 1, t is always irrational, thus, according 1o (41), all the substitutional
systems with detS = &1 and arbitrary o, and pp are classical quasicrystals with 5-peak
positions given by two incommensurate frequencies 1/(o,7 + pop) and 7/(0a7 + Pp).

When detS # X1, the more general set (40} has been tentatively called ‘infinite-
quasiperiodic’ [20] or *limit-quasiperiodic’ [23]. It can be looked upon as the superposition
of infinitely many quasiperiodic spectra (41) scaled by rational factors {detS)™.

Note that

Pz @0mn m RPag—MPy

Qo _UE( )E()+-—-—— . 42)
OO =N gy ooma)  \#) T mat o 2 ¢

All the points $2omn) 0 of (42) lie on a single straight line with the slope pp/pq, going
through the origin: they are intercepts of this line with all the lines along the direction of
e‘{’ passing through an integer grid point. This set of parallel lines constitutes the stable
manifold of the fixed point 0 (mod 1) of the map (29). Thus the / = 0 subset of the set
(40) of wym, corresponds to all £y lying in this disconnected stable manifold for the given
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+ + + + + + +

(m,n)

+ + + + + + +

Figure 2. Classical quasicrystals (0 < |Az] < 1) the positions w,;, of all § peaks can be
obtained by projection in the direction eg" = (I, —t) of afl points of a square lattice with the

lattice constant (52 + pg)-% , onto the Line with the slope pp/ s going through the origin.

ratio p. Similarly, one can show that all £, o that correspond to all wy, of (40) for
an{ > 0, are the /th generation direct predecessors of points in this stable manifold, ie.
&' mmy0 are in the stable manifold. When detS = =1, the map (29) is invertible, and
each {2 point has only one distinct (mod 1) direct predecessor (ie. all its 1st generation
direct predecessors are equivalent mod 1). For a point in the stable manifold this means
that its only distinct predecessor must again be in the stable manifold, and this corresponds
to the reduction of the set (40) to (41).

The distance of Qgum0 from the origin is equal 10 oy, (02 + pﬁ)i. After scaling
the whole §2 space by the factor (o2 + p2)~%, the positions wm, of all § peaks can be
obtained directly by a non-orthogonal projection in the reciprocal superspace as depicted in
figure 2. Modifying somewhat the standard direct-space projection method [7], the same
positions of § peaks as in (41) (or in the ! == 0 subset of {40)) are obtained for all 1D
quasicrystals generated by projecting orthogonally all the points of the 2D square lattice
with lattice constant (2 + p2)? contained in a strip of arbitrary width w about a line with
the slope 7, onto another line with the slope p,/o5 [20]. Note that the square lattices used
in the two projections are mutually reciprocal. Also the slopes of lines involved in the two
projections are mutually reciprocal or of opposite sign. Unlike the direct-space projection,
the reciprocal-space projection of figure 2 is not orthogonal, and the source points are not
contained within a strip of finite width. (Apparently, the same result in the direct space
could also be obtained by projecting a rectangular lattice instead of the square one on the
line with slope t [3]).

Note also that all the Lth iterates Qpny 2 = S Qgm0 lie on a single straight line
with slope &; passing through the origin:

r-skg Pb
kp = —.
p+qk, Pa

L+ =
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Also, all the points S¥~ Qymny.0. L = I lie on the same line.

The values w,,, of (41) are in agreement with the previous resuits for the golden-mean
systems with t = (1 ++/3)/2[3,16]. For os = pp = 1, i = (e +0)/(T+ 1) =mT +7
[29]. For pa =7, pp = 1, W = (M7 ++ 0)/(x2 + 1) = (Fr +7)/+/3 111,101,

5.2. Substitution rules with |Az| > I

In this case, according to (38), §-peaks can only correspond to the solutions of (32) which
are given by (35). Evidently, non-trivial & peaks exist only for rational p. ¥or a given p
(if not mentioned otherwise, in this subsection we will implicitly assume that p is rational)
we define integers po, vp such that p = ug/vp and ged (o, vo) = 1. We want to find all
m, n, ! that satisfy (35). Because, in {35), u(m, n,)/v(n,n,1l) = p, there exists k(m,n,!)
such that w(m, n, 1) = k(m,n, D pp and v(m, n, 1) = k(m, n, 1) v

First note that if (35) is satisfied for some m, n, [, it is also satisfied after replacing
m,n,l with @ =ms —ng, " =np —mr,and [ — 1 because

uw@a a il — D =ulmn b =kimn Dug v(m, 7, — 1D = vim,n, D = kim, 7, Dvo

which follows from {34) and (6). This relation also gives
km,al—1)=kim,n,l=kp.

Inveriing (33) gives

(m) __k s (I-to) __ kK (#0 Naat + vo Nba:) “3)
n (det S Vg (det S) \pto Nast + vo Newt )

Assume now that [ in (35) can be extended to infinity for the given kyp. That would
require that m, n as given by (43) be integer for arbitrary /. This could be satisfied only if
kg(ﬂg Nam‘ =+ vp Nba;) and kg([.&n Nab! + vy Nbbl) are both divisibie by (dﬁtS)I = (l[lg)’ for
arbitrary /. Using (14), one can see that this is not possible for any |Az] > 1. Therefore,
for every ky there is a finite maximum vaiue of /, denoted by /nax (ko), satisfying (35). It is
the largest value of | for which (43) gives m and # that are both integers. For the given p,
the complete set of §-peak positions as given by (35) is then

kopo
@ = oadet Sy

where kg is arbitrary. Note that here ! is no longer arbitrary as it was in (35), and that kotto
can assume only values ‘aliowed’ for the given p.

Let D =detS and t = p + 5. It is an obvious general property that ged (ky, D) = 1
implies !nax (ko) = Imax (1). First assume that ged (2, 2) = 1. Then

=0,..., (ko) (44}

Imax (kg D) = lmax (ko) + 1 (45)
for arbitrary k. The proof is as follows. Let
Mo = ____If_o_,,_, max (ko) o

(ﬂo) = Dirlie) § w/)’ (46)

Since (1/D) S(g’,’":) is always an integer grid point, lyna (ko D) 2 Inax (ko) + 1. The equality
holds if and only 1f

D2 § (no) - DS no
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is not an integer grid point (because then [ (ko) + 1 is the largest I for which m and »
obtained from (43) when kg is replaced by koD are both integers). Using

§=-DI+tS (47)
where T is the identity matrix (cf (7) for L = 2), gives

1 my 4 mo my

— §? =—=38 - 48

D ("u) D (ﬂo) (Ho) “8
which has a non-integer component if and only if (¢/D) 8(’;’3) has the same property. By
definition Of Jmax (ko), (1/D) S(}°} is not an integer grid point. It cannot become integer
when multiplied by ¢ because ged (#, D) = 1. This proves {45). By induction on j, we get
Inax (kD7) = Ipax (1) + j, where ged(k, D) = 1.

When D is a prime number, we thus already know I, (ko) for all kg and all p. Using

this in {44), we can write the complete set of §-peak positions as

o= —FH
Palps —qry
where £ is arbitrary. All these positions are the integral multiples of a single number—one

can write them in the form
m

P

F=0,..., (D)

Gy =

(49)
Here

Po = pa(ps — qri==V jp,

and m is an arbitrary integer. This set of peak positions is identical with that of a periodic
system with lattice constant pp, and we will call it periodic-like.

When D is not a prime, the set of é-peak positions depends on the values of Iqna (ko)
ko being arbitrary and x an arbitrary factor of D). The specttum may deperd on p, and
it can only be either periodic-like or infinite-periodic (see below) because all the §-peak
positions are mutually related by rational factors. For example, all substitution rules with
integer eigenvalues that fall into the present category, give infinite-periodic spectra for a
single p, and periodic-like spectra for all other rational o (see the next subsection).

Now let us turn to the case of ged(D, ) # 1. Assume first that D is prime. That means
ged(D, t) = D, which implies t = D because when Az} > L, t € Dort < —0. Then
(48) reduces to

5(2) ()2

which is always an integer grid point. Since

1 my 1 mo 1 .fmo
— 5 = — &2 -—=8
D? (no) D (no) D (no)
is not integer, Imax (ko D) = fnux{ko) + 2. Thus, we again know In, (kg) for arbitrary &,
Substituting these values into (44) makes it possible to write, for any rational p, the complete
set of 8-peak positions as
& o
Wi = -
7 DD

J=01..., (30)
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where k is arbitrary. This is an infinite-periodic spectrum, which can be considered to be
the superposition of an infinite number of periodic spectra corresponding to lattice constants
equal to Doy, where py = p,/pmg. It is not a subset of integer multiples of any single
number, thus it satisfies the definition of quasiperiodicity as given in the introduction,
However, unlike in (39) and (41), there are no incommensurate frequencies involved.
Nevertheless, both sets of (39) and (50) are equally dense. An open question remains
whether systems with infinite-periodic spectrum with irrational A; can also be called integer
quasicrystals (as suggested in [20] for those with integer Az).

Finally, let us consider the case when ged(D,#) = x; > 1 and D is not a prime
number. Then there are integers ko, &3 such that D = xjxp and ¢ = k143, and {(47) reads
82 = g (—k3 T + &3 S). Therefore, for (’::) defined again by (46), (k163/D%) S(7°) is
an integer grid point. This implies that Im(xuczzkg) 2 lmax(ko) + 2. Then the subset
of 8-peak positions of (44) for all ko = (ky«2)/ corresponding to a single value of
=l (1) + 2j < Lnax (ko) is

Ho .
w-—m 1—0,1,...,00. (51)
This cannot be a subset of peak positions of a pericdic-like spectrum. Since all the §-peak
positions are mutually related through rational factors, the full spectrum must be infinite-
periodic.

Thus we have shown that when D is arbitrary and ged(D,?) # |, the spectrum is
infinite-periodic for all rational p. When gcd(D,t) = 1 and D is prime, the spectrum is
periodic-like for all p. When ged(D, 1) = I and D is not prime, more study is needed.
However, the type of spectrum—periodic-like or infinite-periadic—may be different for
different values of p.

In addition to the periodic-like or infinite-periodic sets of 8 peaks, a diffuse part of the
structure factor will, also most probably, be present. However, in the limit of large /, for
rational p, the dominant component in the diffraction spectra will be the above sets of 8
peaks. For all irrational values of p, there is just a single trivial 8§ peak at w = 0, and
the diffraction spectrum has a singular continuous and multifractal character (at least for
E(a) = a®b, E(b) = ba, as discussed in [19] for s, = sp = 1).

5.3. Substitution rules with integer )y % 0

In this case, A) and g1 are also integer. Except when |Az| == 1, this class of substitution
Tules is a subset of the previous one, and all the results of the previous subsection also apply
fully here. The |A;] = | case differs from the |A;| > 1 case in that [ (k) can be equal to
infinity because {D| = A;.

For integer |Az| = 1, it is easy to find the spectrum when p = grtfr. Then
£ = (a.yf::,,/q'r)e‘lﬂ and £2; = {wp,/qT) A‘;ef’, and defining py = py ged (g7, r) /1, we
can write all the §-peak positions as

m
o 52
i 20 A,-i.

with arbitrary j > 0 and m. Therefore, for this special value of p, the spectrum is always
infinite-periodic,

When [Az| = 1, and p # g7/r, the results of the previous subsection for ged (¢, 4) =
ged (A £ 1, +0) =ged (1, A} = 1 apply.
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Figure 3. Relative intensities (I (w}/15, (@)} of the § peaks for 2 copper-mean system with
Pz = 2pp and sp(w) = 0. Trivial peaks are represented by dotied lines.

As an example, let us discuss in more detail the copper-mean rule (@ — ab?, b — a)
[30,31], for which A, =2, A, =—=1,¢ =2, r=1and r = 1. A copper-mean system thus
has the infinite-periodic spectrum (is an integer quasicrystal) for p, = 2p5 and it has the
periodic-like spectrum for all other p. For p = 2, it has trivial § peaks at w, = n/pp, and
non-trivial ones at
2k+1
Ob 2+l

Using (24) and (23), one can show by induction on / that
T w (=1 [ B T8k —g{-\-!k)
i{op) = (=1) (gu‘ <8k — l+1.k
where gy = exp{—i(2k + 1)a/2'~"] (note that g7, , = gn). Thus

T = (—1) sLt-I-! (guc =8 — Si+1k
Low) = (=1) 8k —8ik — ik

wp = 120 & arbitrary .

and

|g141.% Isaleore) = spleon)] = sb(wlk)lz

Ly(wn) = 5% 4l 52
b

[20.

For the trivial peaks

Ia(wn) =

Isa{wne) + salen))?
90}

The intensity 7, (e, ) decreases quite quickly with [ as shown in figure 3. One can expect that
only the peaks corresponding to the values of I less than a certain threshold can be resolved
in an experiment, and the rest simply contribute to the background diffuse seattering. Of
course, a similar outcome can be expected in the case of the classical quasicrystals but here
the surviving pattern would be more regular. Thus a rather interesting question is how the
experimentally measured diffraction spectra of a copper-mean superlattice with p, = 205
would differ from those for rational g # 2, and from the spectra of periodic systems. A
copper-mean superlattice is probably one of the best candidates to reveal such a difference
as the above rate of the decrease of mtensny with / may actually be one of the slowest
among all integer quasicrystals.
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5.4. Substitution rules with b, = 0

In this case, n.x = 0 and thus the substitution matrix S is non-invertible. This makes the
situation quite different from the case in subsection 5.1 although A; is still a PV number.
We have Ay =p+s and 8' = (p+s) 18,121

According to (38), & peaks are given by (32) which now has solutions for any ratio
p because of the singularity of S (because all integer grip points have infinitely many 1st
generation predecessors). If, for integer x, y,

(;) = 8" = M8 = M (zps + o) w(‘:)

then x = gm/ged(g,s) and y = sm/ ged(qg, s), m being an arbitrary integer. It pgives
non-trivial &-peak positions at

m
o]

for arbitrary j > 0 and m not divisible by A,. It is the same type of the infinite-
periodic spectrum as in (50), (51), and (52) but now gy = ged{g,s)(rp; + pp) =
ged (p, r) po + ged (g, 8) pp. The main difference from the previous case is that now the
new type of quasicrystals may exist for arbitrary real p, /oy, but note that here £,p/Cpr
is always rational for L > 1. However, the set (53) represents only the largest possible
set of § peaks. Some of them need not materialize (have zero intensities) as a result of
the orthogonality of some of the matrices in the product of (24). In fact, for periodic
substitutional systems, which all have n.g = 0, all peaks with large j must be switched off
to get a periodic set of peaks.

For example, a periodic chain generated by &(@) = £&(B) = ab has
wjm = m/{(pa + pp)2?). Its T matrix reads

Ojm = (53)

1

_ {1 exp(limwpa) . 3
1w = (] Spomen) T 0 +epinaras ol L32.

Thus T (@) =0 for j 2 0, and the intensities are non-zero only for j = 0, for which

|82 (wﬂm)lz + 2Re[s] (@om ) 55{wom) ei'p"'] + |sp (wOm)F
(pa 4 pb)z

15 (wom) = I (won) =

(54)

where g = 2nmp, /(2 + op) -

A T™ chain generated by £(a) = ab, §(b) = ba has § peaks at exactly the same positions
but with modified intensities

;" @om) = ;M (wom) = I3 (anm) (14 c0spm) /2. (55}

For large enough L, the § peaks for p, # pp, must prevail over all other peaks with
ay{w) < 2 that are responsible for the singular continuous part of the spectrum, and the
diffraction spectrum of a T™M chain will resemble that of the above periodic chain. For
Pa = Py, the peaks corresponding to m = 2k — 1 are switched off in the T™M case because
1+ cos g1 = 0, which is the consequence of the orthogonality of some matrices in (24)
as discussed for this special case already in [17]. Thus for p; = pp, a TM chain has only
the trivial & peaks (identical with those of a random chain). For p; % 0. it has a set of
d peaks in the same positions as the periodic chain, and the larger pa/pp -+ P/ 04 1S, the
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closer the peak intensities approach those of the periodic chain. This ¢an be understood in
the light of the fact that when one tile is much larger than the other one, it fills most of the
space in an ‘*almost periodic way’. The formula for the Fourier transform for arbitrary « is

£L~2
Fri(w) =2 e"'“"”’*”""”"“*{c(co) [T cost2/maios + pu)]
j=0
L=-2 .
+ (Bxp — 8.a) (D S(@) [ [ sin[2we(o, + Pb)]} (56)
j=0

where L 2 2 and

S(ew) = 5,() €7 sin (mwp,) ~ 5z (w) 7P sin (Twp,)
- . (57)
C(w) = sp{w) €™ cos (wewp,) + sa{e) €™ cos (Twos) .

The diffraction spectra of some other T™M-like systems are similar. For example for
E(a) = ab, E(b) = b%a?, all the peaks of (53) with / > 1 do not materialize again. Unlike
for the ™ chain, for p, = g, all the non-trivial peaks survive, and this chain diffracts as a
periodic chain for all ratios p,/0p.

However, a different situation can be found for £(a2) = ab, &(b) = ab’a (it has the
same &, but is in a different LT class to the former rule—see Table IT of [21]). For the
present rule, all the peaks of (53) seem 1o have non-zero intensity. Thus, this is another
explicit example of an integer quasicrystal with § peaks at infinitely many rational multiples
of a single frequency. Formulae for arbitrary , p, and p, are quite complicated: for L > 1
one has

Falw)y=(@r+u) Fa+ (e +w) f
Fyp(@) = Fop (@) + E¥ [ (0 + wy) Fay + (or +u2) f1.

Here
For = (@) + sp(@) 7% f =5p(@) +55(@) 2" E = eBmolnta
h=yy=w=umn=0 y=th=1 uy=E wy = E2,
For L >3
L2 L=2
L= Z W E™ Zyp +ur— v = Z we E™ Zyp 4 wro
k=1 k=1
-2 L2
Yy =2c0s[210j(o +2)l  m=3.3  Zu=[[]0+¥.
1=k =k
Fork=1
sz = EY (unpr + E¥ wypr1) Waksz = E* (Waeq + B Uae1)

k=1 k-1 k=1
Uy = ES Z [l—[ Yszw:l wogt = E% Z |:H Yzf:gf] & = 629Jf .
=0

0 L e I =
g —i=0 =0
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Here ¢j; j = 0,...,&k — 1 can assume two values, 0 and 1. Altogether, there are 2¢
different ways to choose ¢;. ZCIO) represents the sum over 2*~! of these combinations for

which & + Y¥7) ¢; = 0 (med 2). Y represents the sum over the other 2~ of these
combinations for which & + Zk—o c; =1 {mod 2). For example, 13 = ESY,, wy=ESY,
us = E®¥ (Y5 + Y2Y1s), ws = E¥ (Va¥o + YiTig), ...

From these formulae we have calculated the intensities of a few 8 peaks for p, = pp
and m = 1,2 in (53). In this case, lp(wim) = dim |8a(0im) ~ sp(epe) |2/ (204)%. For the
first few values of 1, du[ = 0._1, dn = 0.037, dz] = 2323 x 10_4, d3| = 1.560 x 10_7,
dy = 1,159 x 10_“, di2 =0.1,dpn =318 x 10-3, dyz = 8.660 x 1076 m=2and ! =0
give a trivial peak with intensity s, (w12) + sp(@12)|2/(2p,)? ). Here the rate of decrease of
intensity with { is even faster than that for the copper-mean superiattice discussed above.

6. Conclusions

In summary, the following classes of two-letter substitutional systems were found:

o Classical quasicrystals (two incommensurate
spatial frequencies)

0=< I).z] < I, llkz = %I

Infinite-quasipericdic systems (rational
mulitiples, two incommensurate frequencies)

0< Ilzl < 1, AlAz 75:1:1

e Periodic systems (integer multiples of =0
a single spatial frequency)
¢ Infinite-periodic systems (integer quasi- lAz] > 1, pa/ps rational (e.g. always

crystals) (rational multiples of a single
spatial frequency)

Systems with periodic-like arrays of

when ged(det S, p + 5) £ 1),
or Az = integer # 0
and p,fpp = gt/r, or Ay =0

Az 2 1 and pg/pop rational,

non-trivial § peaks ori; =0
» Systems with no nontrivial 8 peaks fA2| = | and p,/pp irrational,
ori=0.

The PV property ([A2| < 1) supplemented with the requirement that Az # QO is sufficient
for obtaining a quasicrystal with either classical (quasiperiodic) or infinite quasiperiodic
spectra. If one requires that a quasicrystal must involve some irrational {incommensurate)
numbers, then there are no other 1D two-letter substitutional quasicrystals. However, if one
uses a looser definition of quasicrystals as given in the introduction, which also occurs often
in other literature (requiring a dense set of & peaks at positions that cannot be expressed as
integral multiples of a single number), then it is possible to claim that there are quasicrystals
with infinite-periodic spectra also for |A;} = 1 for some or for all rational p, and for A, = 0.

The presented scheme can be easily adapted to substitution rules with an arbitrary
number of letters. Much more interesting would be its systematic application to higher-
dimensional substitutional systems, which has so far been done oaly for a few systems,
e.g. for the Penrose tiling [32]. In higher dimensions one has much less freedom in
choosing different tile dimensions. For example, in parallelogram or parallelopiped tilings
the dimensions of all the different tiles are identical. In analogy with the 1D results presented
here, we can expect that the diffraction spectra of many such aperiodic deterministic
structures with underlying periodic lattice will resemble in some way those of periodic
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crystals (have some higher-dimensional variants of periodic-like or infinite-periedic spectra).
Could natural solids with such structures exist? Would it be possible to distinguish their
diffraction spectra from truly periodic crystals when various defects and the Debye—Waller
factor broaden all the peaks? Apparently the analysis of the diffuse background would be
necessary, We think that 2 good test case to develop such analysis is provided by some of
the artificial layered structures described by the formalism of this paper (see the discussion
at the end of section 5.3). It might be interesting to try to do diffraction experiments on
some of these superlattices that are either the integer quasicrystals or diffract as periodic
lattices, to find out how their spectra differ from periodic superlattices made of the same
building blocks.

We are also preparing a sequel (part II) to this paper dealing with non-8 peaks with
a,(w} < 2 (the singular continuous component of the spectrum) originating from the
periodic orbits of the map (29) with period larger than 1.
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Appendix A. The proof of equation (30)

We denote by | M, (w}| the matrix whose y¢-entry is the modulus of the y ¢-entry of M (w);
X.¢ € A, and by |x| the vector whose x-componeni is the modulus of the y-component
of the vector x; ¥ € A. From (22) we always have |M;(w}| £ & by which we mean that
[IM(@)]yp € Sy for all x,¢ € A If for some (x, @), [[Mr{w)l]lyp < Syp. we write
IMp{wl < S.

We first prove that |A, max| € A1, where Apma is the largest-modulus eigenvalue of
M;(w): eﬁ” be the left eigenvector of & associated with A, (cf section 3), and eg g
be a right eigenvector of M (w) associated with Ao €'S = 118, M, (@) €Lmay =
Al max €L max. Then

4} (] m {0
[Amaxl€) |€rmax| = €] |Mi{w)eLmx| € € IML(@)|leLms] € € SleLmaxl

because both components of e are positive. From this

3 H
IArmaxl €] €L maxl € A1 €)' €L masl - (Al)

Since e‘,“ lemax| > 0, (Al) implies AL max] € Ay, which was to be proven. If (M. (w}| < S,
one cart show in the same way that |A; max| < A; because & has positive off-diagonal entries.
As a consequence of this, we can say that if |Apmax| = A; then (M ()| = 8.

Now we prove that [f; pa.| & }\.{" = liMy oo |AL max] = A7, Where ¢ qay s the largest-
modulus eigenvalue of T (w): from (24), [TL(w)| = ‘I’L‘,J:L_l My(w)| € ]_[?=L_l |My(w)| €

St. Therefore, Jtimal < [To)_; IMmax (@)l € ME. If [fracl & AF as L = o0, then

I‘[}):L_](I}L;muuk;) — 1 as L —» oo, and since [A; max| € Ay for all L, [Appex] —> Ap as
L = o0,
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Next we prove that a,{@) = 2 = lim;o |M.(w}| = S. Assume that the negation
is true: o,(w} = 2 for some y € A and |M (w)| does not converge to S. Since
Di(w) = & — |Mp(w)] is 2 non-negative matrix, this means that 3n > 0 YLg 3L > Ly
such that at least one of the entries of Dy (w) is greater than n. This can be written in a
‘compact’ way: Je >0 (z now being a 2 x 2 matrix) YLy 3L > Lg such that Dy{w) > &.
Then (S —£) 2 [Mp{w)|. Since (S —¢&) < &, the larger eigenvalue A, of (S —g) is strictly
less than A; and goes to A; when g goes to 0, we have

Ay > Ay 2z max[eigenvalues((M (@))] 2 [Armaxl

which means that |A; max| cannot converge to A;, which is ir contradiction with &, (w) = 2.
Thus limg .o |ML(w)] = &. Note that the converse is false. For instance, in the golden-
mean case, (@ ab, br+a), M (w)| =& V(L, w) but there exists o such that o, (w) # 2
foraye A

Let us now consider a substitution such that for some x, ¢ € .4 and k an integer, £*(x)
contains ¢ (this is always satisfied except for certain periodic £%°(x)). If & is a primitive
substitution, &% is also primitive and gives the same structure factor. This allows us to
work with &* instead of & without any modification of the physical problem. Thus we can
assume that £(y) itself contains ¢? (otherwise we replace £ by £*). Let &y be such that
E(x ko) = E(x)ko+ 1] = ¢, and let lim; , o0 |Mr(w)| = &, This convergence implies that
for all £ and £’ such that £(x)[k] = E(¥}[¥],

k=1 k=1
2w li l [sL(“’“)] - [sb( )] }:o (mod 27) (A2)
“ e ;g P/ lgoou z Pv/ Lsoen

=

which gives

litn w[sfﬂ(”"):] = lim w[sl(p“)] =0 (mod 1). (A3)
L=roo P/ Jetxihe) L0 P/ lg

It remains to prove that the other component of £3; converges to 0(mod1). We denote by
¢’ the other letter of .A. From (A3) we have

0 (mod 1) = lim w| S )| =8 lim w|SE{™
L—oo Pe/ e L=oo Pv/ dp

wso o)), = imels ()],

Then, if Spp % 1 (i.e. Spgr > 1 because it is an off-diagonal entry of S}, there exist & and
k' such that k < &', 5(@)k] = §() X =¢', and for k < j < &', E(¢)]j] = ¢. Then from

(A2),
@ lim [s'-(ﬁ“)] =0 (mod 1)
L—oo b &

which was to be proven. In the periodic case, a direct calculation shows that (30} holds,
too.
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Appendix B. The proof of (38)
Bl. (i)==(ii)
Let m; be an integer such that dlk’; + dgl’z =m+eé¢,where 0 < ¢ < 15 We claim that
3L such that Mpgz — Mgt Mpg) — Aege ity = 0 VizL (BD
and
my=d x+Br YIixL. (B2)

Actually, 4 ~ e iy — Ry = dy M) (AT — Mogh) — neg) +dz My (A3 — metrha — fesr) +
€147 — Mo €141 — Mer €. The fitst two terms on the right-hand side are zero, and so the
left-hand side is a sequence of integers converging to zero. This proves (B1). Clearly, there
exists a couple a, § such that

mp=ail+ gk mpe =it 4 gttt (B3)
Using (B1), this implies
Mits = @A} (Metihy + Ner) + BA] (Megha + ner) = @ A7H2 + BATH

and (B3) will be proven once the equality @ = d; is established. By definition,
& = (d\—a) M, +(d,—B) AL VI 2 L. Since &) > max(l, {Az]), di —a = limp o0 /A = 0.
Finally, from (B3),

Mg —mih

d = . B4
SEPY X7 P B9

Thus (38)(ii)}(1) is proven. Note that A, = 0 implies that A; is an integer, then (B4)
implies (38)(ii}(3). If |Az| < 1, there is clearly no restriction on &> while for A2} = 1,
& ={dy— B) A’z does not converge to zero except when 8 = dz. Thus ¢ =0V 2 L,
and (38)(ii)(2) holds.

B2, {ii) = (i}
First note that the sequence of positive integers
frea = Mess fryr + nee fi fo=0 fi=1

is of the Fibonacci type and

ﬁ___}“ll_llz.
Ay — Az
Thus
i-L i—L
+nk
diM) 4+ dadl = A b M) —2 (d -—"’u—-—)xf
14 + dhd; (m+”2)11—12 (m+n ')M—Az+ 2+lé(k:—lz) 2
m+nl] !
_L - - dy 4+ ———} A
smfiL nneﬁﬁr,:+(z+ké(li_lz)) >

goes to zero (mod 1) when | — oc.
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